PrettyPrinting/pretty_printing.ml

212 lines
7.6 KiB
OCaml

(*open Spectrum*)
let rec print_mat m =
for i = 0 to (Array.length m)-1 do
print_char ' ';
for j = 0 to (Array.length m.(i))-1 do
if m.(i).(j) <> -1 then
print_int m.(i).(j)
else
print_char '_';
print_char ' ';
print_char '|';
print_char ' ';
done;
print_char '\n';
for j = 0 to (Array.length m.(i))-1 do
print_char '-';
print_char '-';
print_char '-';
print_char '+';
done;
print_char '\n';
done ;;
exception ReturnBool of bool ;;
let pi = 3.14159265358979343 ;;
let abs x =
if x >= 0 then x else -x ;;
let absf x =
if x >= 0. then x else -1. *. x ;;
let is_rempaceable c arr =
try
for i = 0 to (Array.length arr - 1) do
if c = arr.(i) then
raise (ReturnBool true)
else
()
done;
raise (ReturnBool false)
with
| ReturnBool b -> b ;;
let draw_line_bresenham mat cls origin x1 y1 x2 y2 cutoff =
let slope = ref 0. in
let override_arr = [|' '; '.'; '|'; '-'|] in
if x2 <> x1 || y2 <> y1 then
slope := (float_of_int (y2 - y1) /. float_of_int (x2 - x1))
else
();
(*Printf.printf "(%f)\n" !slope;*)
if absf (!slope) < 1. then
if x1 < x2 then
for k = x1 to x2 do
let cur_y = ref ((!slope) *. float_of_int (k - x1) +. float_of_int y1) in
if !slope = 0. then cur_y := float_of_int y2 else ();
if is_rempaceable mat.(k).(int_of_float (!cur_y)) override_arr then begin
if x2 - k <= cutoff || k mod 2 = 0 || cls.(k).(int_of_float (!cur_y)) = 0 then
cls.(k).(int_of_float (!cur_y)) <- origin+1
else
();
if x2 - k > cutoff then
mat.(k).(int_of_float (!cur_y)) <- '|'
else
mat.(k).(int_of_float (!cur_y)) <- 'v'
end
else
()
done
else
for k = x1 downto x2 do
let cur_y = ref ((!slope) *. float_of_int (k - x1) +. float_of_int y1) in
if !slope = 0. then cur_y := float_of_int y2 else ();
if is_rempaceable mat.(k).(int_of_float (!cur_y)) override_arr then begin
if k - x2 <= cutoff || k mod 2 = 0 || cls.(k).(int_of_float (!cur_y)) = 0 then
cls.(k).(int_of_float (!cur_y)) <- origin+1
else
();
if k - x2 > cutoff then
mat.(k).(int_of_float (!cur_y)) <- '|'
else
mat.(k).(int_of_float (!cur_y)) <- '^'
end
else
()
done
else
if y1 < y2 then
for l = y1 to y2 do
let cur_x = ref (float_of_int x2) in
if (!slope) <> 1.0 /. 0.0 && (!slope) <> (-. 1.) /. 0. then
cur_x := ((float_of_int l) +. ((!slope) *. (float_of_int x1) -. (float_of_int y1))) /. (!slope)
else
();
if is_rempaceable mat.(int_of_float (!cur_x)).(l) override_arr then begin
if y2 - l <= cutoff || l mod 2 = 0 || cls.(int_of_float (!cur_x)).(l) = 0 then
cls.(int_of_float (!cur_x)).(l) <- origin+1
else
();
if y2 - l > cutoff then
mat.(int_of_float (!cur_x)).(l) <- '-'
else
mat.(int_of_float (!cur_x)).(l) <- '>'
end
else
()
done
else
for l = y1 downto y2 do
let cur_x = ref (float_of_int x2) in
if (!slope) <> 1.0 /. 0.0 && (!slope) <> (-. 1.) /. 0. then
cur_x := ((float_of_int l) +. ((!slope) *. (float_of_int x1) -. (float_of_int y1))) /. (!slope)
else
();
if is_rempaceable mat.(int_of_float (!cur_x)).(l) override_arr then begin
if l - y2 <= cutoff || l mod 2 = 0 || cls.(int_of_float (!cur_x)).(l) = 0 then
cls.(int_of_float (!cur_x)).(l) <- origin+1
else
();
if l - y2 > cutoff then
mat.(int_of_float (!cur_x)).(l) <- '-'
else
mat.(int_of_float (!cur_x)).(l) <- '<'
end
else
()
done;;
let display mat cls =
let colors = [|"\027[40m"; "\027[41m"; "\027[42m"; "\027[43m"; "\027[44m"; "\027[45m"; "\027[46m"; "\027[47m"; "\027[100m"; "\027[101m"; "\027[102m"; "\027[103m"; "\027[104m"; "\027[105m"; "\027[106m"; "\027[107m"|] in
for i = 0 to (Array.length mat -1) do
for j = 0 to (Array.length mat.(i) -1) do
if cls.(i).(j) = 0 then
print_string colors.(0)
else
print_string colors.(max 1 (cls.(i).(j) mod (Array.length colors)));
if mat.(i).(j) = '&' then
print_char ' '
else
print_char mat.(i).(j)
done;
print_string "\027[0m";
print_char '\n'
done;;
let extend mat cls i0 j0 dst =
let ni = Array.length mat in
let nj = Array.length mat.(0) in
for i = -dst to dst do
for j = -dst to dst do
if i0 - i >= 0 && j0 - j >= 0 && i0 - i < ni && j0 - j < nj then begin
cls.(i0-i).(j0-j) <- Char.code mat.(i0).(j0) - 48 + 1;
if abs i = dst || abs j = dst then
mat.(i0-i).(j0-j) <- '*'
else if i <> 0 || j <> 0 then
mat.(i0-i).(j0-j) <- '&'
else
()
end
else
()
done
done ;;
let extremely_fancy_graph_printing g size =
(* creation of the image *)
let px = Array.make (size) [||] in
for i = 0 to (size-1) do
px.(i) <- Array.make (3*size) ' '
done;
(* color matrix *)
let cls = Array.make (size) [||] in
for i = 0 to (size-1) do
cls.(i) <- Array.make (3*size) 0
done;
let coords = Array.make size (0, 0) in
(* placing the points on the trig circle *)
for k = 0 to Array.length g - 1 do
let theta = 2. *. pi *. (float_of_int k) /. (float_of_int (Array.length g)) in
let i = ref (int_of_float ((float_of_int size) /. 2.) + int_of_float ((float_of_int size) /. 2. *. cos theta)) in
let j = ref (int_of_float ((float_of_int size) /. 2.) + int_of_float ((float_of_int size) /. 2. *. sin theta)) in
if !i < 0 then i := 0 else ();
if !j < 0 then j := 0 else ();
if !i >= size then i := size-1 else ();
if !j >= size then j := size-1 else ();
px.(!i).(3* !j) <- Char.chr (k + 48);
extend px cls !i (3* !j) 2;
coords.(k) <- (!i, 3* !j);
done;
(* draw the connections *)
for i = 0 to Array.length g -1 do
for j = 0 to Array.length g.(i) -1 do
draw_line_bresenham px cls i (fst coords.(i)) (snd coords.(i)) (fst coords.(g.(i).(j))) (snd coords.(g.(i).(j))) 4
done
done;
(* show the image *)
display px cls ;;
let gr = [|[|1; 2|]; [|2; 3|]; [|0; 1; 3|]; [|0; 1; 4|]; [|2; 3|]; [||]; [||]|] ;;
(*print_mat gr ;;*)
extremely_fancy_graph_printing gr 44 ;