open Graphics ;; (* SOMMAIRE - misc functions : 20 - main function : 68 - type 2 printing: 122 - DFS : 373 - BFS : 630 - Dijkstra : *) Random.self_init () ;; let pi = 3.14159265358979343 ;; let rec ln10 n = match n with | k when k < 0 -> failwith "Are you sure about that ?" | k when k < 10 -> 0 | k -> 1 + ln10 (k/10) ;; let delta i j = if i = j then 1 else 0 ;; let draw_integer x0 y n0 r = (* 7-seg display *) let n = ref n0 in let size = ln10 n0 in let len = r/3 in let offset = size*(len*11/7)/2 in for i = 0 to size do let x = x0 + offset - i*(len*11/7) in if Array.mem (!n mod 10) [|0; 4; 5; 6; 7; 8; 9|] then draw_poly_line [|(x-len/2, y+len); (x-len/2, y)|]; if Array.mem (!n mod 10) [|0; 2; 3; 5; 6; 7; 8; 9|] then draw_poly_line [|(x-len/2, y+len); (x+len/2, y+len)|]; if Array.mem (!n mod 10) [|0; 1; 2; 3; 4; 7; 8; 9|] then draw_poly_line [|(x+len/2, y+len); (x+len/2, y)|]; if Array.mem (!n mod 10) [|2; 3; 4; 5; 6; 8; 9|] then draw_poly_line [|(x-len/2, y); (x+len/2, y)|]; if Array.mem (!n mod 10) [|0; 1; 3; 4; 5; 6; 7; 8; 9|] then draw_poly_line [|(x+len/2, y-len); (x+len/2, y)|]; if Array.mem (!n mod 10) [|0; 2; 3; 5; 6; 8; 9|] then draw_poly_line [|(x-len/2, y-len); (x+len/2, y-len)|]; if Array.mem (!n mod 10) [|0; 2; 6; 8|] then draw_poly_line [|(x-len/2, y-len); (x-len/2, y)|]; n := !n/10; done ;; let identity n = n ;; let square x = x *. x ;; let norm_int v1 v2 = Float.sqrt (square (float_of_int ((fst v2) - (fst v1))) +. square (float_of_int ((snd v2) - -snd v1))) ;; let improved_pretty_printing g wd ht r = let n = Array.length g in let coords = Array.make n (0, 0) in let colors = Array.make n (rgb 0 0 0) in for i = 0 to n-1 do colors.(i) <- rgb ((255 * i) / n) ((255*(i+n/3)) / n) ((255*(2*i+n/3)) / n) done; for k = 0 to n-1 do let theta = 2. *. pi *. (float_of_int k) /. (float_of_int (n)) +. pi /. (float_of_int (n)) in let i = ref (int_of_float ((float_of_int wd) /. 2.) + int_of_float ((float_of_int wd) /. 2.2 *. cos theta)) in let j = ref (int_of_float ((float_of_int ht) /. 2.) + int_of_float ((float_of_int ht) /. 2.2 *. sin theta)) in set_line_width 8 ; set_color colors.(k) ; draw_circle !i !j r; coords.(k) <- (!i, !j) done ; set_line_width 4 ; set_color black ; for k = 0 to n-1 do for l = 0 to (Array.length g.(k))-1 do if g.(k).(l) <> (-1) then begin draw_poly_line [|coords.(k); coords.(g.(k).(l))|] end done done; set_line_width 8 ; for k = 0 to n-1 do set_color colors.(k) ; for l = 0 to (Array.length g.(k))-1 do if g.(k).(l) <> (-1) then begin let slope = Float.atan2 (float_of_int (snd coords.(g.(k).(l)) - snd coords.(k))) (float_of_int (fst coords.(g.(k).(l)) - fst coords.(k))) in let nexi = int_of_float (float_of_int (fst coords.(k)) +. (float_of_int r) *. 1.75 *. cos slope) in let nexj = int_of_float (float_of_int (snd coords.(k)) +. (float_of_int r) *. 1.75 *. sin slope) in draw_poly_line [|coords.(k); (nexi, nexj)|] end done done; for k = 0 to n-1 do set_line_width 10 ; set_color black ; fill_circle (fst coords.(k)) (snd coords.(k)) r; set_color colors.(k) ; set_line_width 5 ; draw_integer (fst coords.(k)) (snd coords.(k)) k r done; ignore (Scanf.bscanf Scanf.Scanning.stdin "%d\n" identity) ;; (* Another version *) type node = {tag : int; edges : int array} ;; type type2graph = {width : int ; height : int ; g : node array array} ;; (* array is length 8 and indicate if there-s a path with the nodes [| SO ; O ; NO ; N ; NE ; E ; SE ; S |] *) let generate_type2_graph w h freq inf sup = let weighted_d100 i = let res = Random.int 100 in if res <= freq then try (inf + Random.int (sup-inf)) with | Invalid_argument _ -> inf else (-1) in let gr = {width = w ; height = h ; g = Array.make w [||]} in for i = 0 to w-1 do let init_fct j = {tag = i*h + j; edges = Array.init 8 weighted_d100} in gr.g.(i) <- Array.init h init_fct; done; gr ;; let another_type_of_graph_printing (gr : type2graph) r dx dy is_weighted = let colors = Array.make_matrix gr.width gr.height (rgb 0 0 0) in for i = 0 to gr.width -1 do for j = 0 to gr.height -1 do if (i*gr.width + j) mod 7 = 0 then colors.(i).(j) <- rgb 0 0 200 else if (i*gr.width + j) mod 7 = 1 then colors.(i).(j) <- rgb 0 200 0 else if (i*gr.width + j) mod 7 = 2 then colors.(i).(j) <- rgb 0 200 200 else if (i*gr.width + j) mod 7 = 3 then colors.(i).(j) <- rgb 200 0 0 else if (i*gr.width + j) mod 7 = 4 then colors.(i).(j) <- rgb 200 0 200 else if (i*gr.width + j) mod 7 = 5 then colors.(i).(j) <- rgb 200 200 0 else colors.(i).(j) <- rgb 200 200 200 done done; set_line_width 4; set_color black ; for i = 0 to gr.width -1 do for j = 0 to gr.height -1 do let node_xy = ((r + (2*r + dx)*i), (r + (2*r + dy)*j)) in if (i > 0 && j > 0) && gr.g.(i).(j).edges.(0) <> (-1) then begin (* SO *) draw_poly_line [|node_xy; (r + (2*r + dx)*(i-1)), (r + (2*r + dy)*(j-1))|] ; end; if (i > 0) && gr.g.(i).(j).edges.(1) <> (-1) then begin (* O *) draw_poly_line [|node_xy; (r + (2*r + dx)*(i-1)), (r + (2*r + dy)*j)|] ; end; if (i > 0 && j < gr.height -1) && gr.g.(i).(j).edges.(2) <> (-1) then begin (* NO *) draw_poly_line [|node_xy; (r + (2*r + dx)*(i-1)), (r + (2*r + dy)*(j+1))|] ; end; if (j < gr.height -1) && gr.g.(i).(j).edges.(3) <> (-1) then begin (* N *) draw_poly_line [|node_xy; (r + (2*r + dx)*i), (r + (2*r + dy)*(j+1))|] ; end; if (i < gr.width-1 && j < gr.height -1) && gr.g.(i).(j).edges.(4) <> (-1) then begin (* NE *) draw_poly_line [|node_xy; (r + (2*r + dx)*(i+1)), (r + (2*r + dy)*(j+1))|] ; end; if (i < gr.width-1) && gr.g.(i).(j).edges.(5) <> (-1) then begin (* E *) draw_poly_line [|node_xy; (r + (2*r + dx)*(i+1)), (r + (2*r + dy)*j)|] ; end; if (i < gr.width-1 && j > 0) && gr.g.(i).(j).edges.(6) <> (-1) then begin (* SE *) draw_poly_line [|node_xy; (r + (2*r + dx)*(i+1)), (r + (2*r + dy)*(j-1))|] ; end; if (j > 0) && gr.g.(i).(j).edges.(7) <> (-1) then begin (* S *) draw_poly_line [|node_xy; (r + (2*r + dx)*i), (r + (2*r + dy)*(j-1))|] ; end; done done; let roff = (9*r)/8 in let roff2 = (7*r)/5 in let rsize = (3*r)/4 in let wcolor = rgb 255 255 255 in let bcolor = rgb 0 0 0 in set_line_width 8; for i = 0 to gr.width -1 do for j = 0 to gr.height -1 do let node_xy = ((r + (2*r + dx)*i), (r + (2*r + dy)*j)) in if (i > 0 && j > 0) && gr.g.(i).(j).edges.(0) <> (-1) then begin (* SO *) if is_weighted then begin set_color bcolor; fill_circle (fst node_xy - roff) (snd node_xy - roff) (3*rsize/4) ; set_color wcolor; set_line_width 3; draw_integer (fst node_xy - roff) (snd node_xy - roff) gr.g.(i).(j).edges.(0) rsize; end else begin set_line_width 8; set_color colors.(i).(j) ; draw_poly_line [|node_xy; (2 * (fst node_xy) + r + (2*r + dx)*(i-1))/3, (2 * (snd node_xy) + r + (2*r + dy)*(j-1))/3|] ; end end; if (i > 0) && gr.g.(i).(j).edges.(1) <> (-1) then begin (* O *) if is_weighted then begin set_color bcolor; fill_circle (fst node_xy - roff2) (snd node_xy) (3*rsize/4) ; set_color wcolor; set_line_width 3; draw_integer (fst node_xy - roff2) (snd node_xy) gr.g.(i).(j).edges.(1) rsize; end else begin set_line_width 8; set_color colors.(i).(j) ; draw_poly_line [|node_xy; (2 * (fst node_xy) + r + (2*r + dx)*(i-1))/3, (2 * (snd node_xy) + r + (2*r + dy)*j)/3|] ; end end; if (i > 0 && j < gr.height -1) && gr.g.(i).(j).edges.(2) <> (-1) then begin (* NO *) if is_weighted then begin set_color bcolor; fill_circle (fst node_xy - roff) (snd node_xy + roff) (3*rsize/4) ; set_color wcolor; set_line_width 3; draw_integer (fst node_xy - roff) (snd node_xy + roff) gr.g.(i).(j).edges.(2) rsize; end else begin set_line_width 8; set_color colors.(i).(j) ; draw_poly_line [|node_xy; (2 * (fst node_xy) + r + (2*r + dx)*(i-1))/3, (2 * (snd node_xy) + r + (2*r + dy)*(j+1))/3|] ; end end; if (j < gr.height -1) && gr.g.(i).(j).edges.(3) <> (-1) then begin (* N *) if is_weighted then begin set_color bcolor; fill_circle (fst node_xy) (snd node_xy + roff2) (3*rsize/4) ; set_color wcolor; set_line_width 3; draw_integer (fst node_xy) (snd node_xy + roff2) gr.g.(i).(j).edges.(3) rsize; end else begin set_line_width 8; set_color colors.(i).(j) ; draw_poly_line [|node_xy; (2 * (fst node_xy) + r + (2*r + dx)*i)/3, (2 * (snd node_xy) + r + (2*r + dy)*(j+1))/3|] ; end end; if (i < gr.width-1 && j < gr.height -1) && gr.g.(i).(j).edges.(4) <> (-1) then begin (* NE *) if is_weighted then begin set_color bcolor; fill_circle (fst node_xy + roff) (snd node_xy + roff) (3*rsize/4) ; set_color wcolor; set_line_width 3; draw_integer (fst node_xy + roff) (snd node_xy + roff) gr.g.(i).(j).edges.(4) rsize; end else begin set_line_width 8; set_color colors.(i).(j) ; draw_poly_line [|node_xy; (2 * (fst node_xy) + r + (2*r + dx)*(i+1))/3, (2 * (snd node_xy) + r + (2*r + dy)*(j+1))/3|] ; end end; if (i < gr.width-1) && gr.g.(i).(j).edges.(5) <> (-1) then begin (* E *) if is_weighted then begin set_color bcolor; fill_circle (fst node_xy + roff2) (snd node_xy) (3*rsize/4) ; set_color wcolor; set_line_width 3; draw_integer (fst node_xy + roff2) (snd node_xy) gr.g.(i).(j).edges.(5) rsize; end else begin set_line_width 8; set_color colors.(i).(j) ; draw_poly_line [|node_xy; (2 * (fst node_xy) + r + (2*r + dx)*(i+1))/3, (2 * (snd node_xy) + r + (2*r + dy)*j)/3|] ; end end; if (i < gr.width-1 && j > 0) && gr.g.(i).(j).edges.(6) <> (-1) then begin (* SE *) if is_weighted then begin set_color bcolor; fill_circle (fst node_xy + roff) (snd node_xy - roff) (3*rsize/4) ; set_color wcolor; set_line_width 3; draw_integer (fst node_xy + roff) (snd node_xy - roff) gr.g.(i).(j).edges.(6) rsize; end else begin set_line_width 8; set_color colors.(i).(j) ; draw_poly_line [|node_xy; (2 * (fst node_xy) + r + (2*r + dx)*(i+1))/3, (2 * (snd node_xy) + r + (2*r + dy)*(j-1))/3|] ; end end; if (j > 0) && gr.g.(i).(j).edges.(7) <> (-1) then begin (* S *) if is_weighted then begin set_color bcolor; fill_circle (fst node_xy) (snd node_xy - roff2) (3*rsize/4) ; set_color wcolor; set_line_width 3; draw_integer (fst node_xy) (snd node_xy - roff2) gr.g.(i).(j).edges.(7) rsize; end else begin set_line_width 8; set_color colors.(i).(j) ; draw_poly_line [|node_xy; (2 * (fst node_xy) + r + (2*r + dx)*i)/3, (2 * (snd node_xy) + r + (2*r + dy)*(j-1))/3|] ; end end; done done; set_line_width 5; for i = 0 to gr.width -1 do for j = 0 to gr.height -1 do set_color (rgb 48 48 48) ; fill_circle (r + (2*r + dx)*i) (r + (2*r + dy)*j) r ; set_color black ; draw_circle (r + (2*r + dx)*i) (r + (2*r + dy)*j) r ; set_color colors.(i).(j) ; draw_integer (r + (2*r + dx)*i) (r + (2*r + dy)*j) gr.g.(i).(j).tag r done done ; ignore (Scanf.bscanf Scanf.Scanning.stdin "%d\n" identity) ;; (* ------------------------------------------------------------*) (* ------------------------------------------------------------*) (* ------------------------------------------------------------*) let another_type_of_dfs (gr : type2graph) r dx dy dt = let colors = Array.make_matrix gr.width gr.height (rgb 0 0 0) in for i = 0 to gr.width -1 do for j = 0 to gr.height -1 do if (i*gr.width + j) mod 6 = 0 then colors.(i).(j) <- rgb 0 0 200 else if (i*gr.width + j) mod 6 = 1 then colors.(i).(j) <- rgb 0 200 0 else if (i*gr.width + j) mod 6 = 2 then colors.(i).(j) <- rgb 0 200 200 else if (i*gr.width + j) mod 6 = 3 then colors.(i).(j) <- rgb 200 0 0 else if (i*gr.width + j) mod 6 = 4 then colors.(i).(j) <- rgb 200 0 200 else colors.(i).(j) <- rgb 200 200 0 done done; set_line_width 4; set_color (rgb 192 192 192) ; for i = 0 to gr.width -1 do for j = 0 to gr.height -1 do let node_xy = ((r + (2*r + dx)*i), (r + (2*r + dy)*j)) in if (i > 0 && j > 0) && gr.g.(i).(j).edges.(0) <> (-1) then begin (* SO *) draw_poly_line [|node_xy; (r + (2*r + dx)*(i-1)), (r + (2*r + dy)*(j-1))|] ; end; if (i > 0) && gr.g.(i).(j).edges.(1) <> (-1) then begin (* O *) draw_poly_line [|node_xy; (r + (2*r + dx)*(i-1)), (r + (2*r + dy)*j)|] ; end; if (i > 0 && j < gr.height -1) && gr.g.(i).(j).edges.(2) <> (-1) then begin (* NO *) draw_poly_line [|node_xy; (r + (2*r + dx)*(i-1)), (r + (2*r + dy)*(j+1))|] ; end; if (j < gr.height -1) && gr.g.(i).(j).edges.(3) <> (-1) then begin (* N *) draw_poly_line [|node_xy; (r + (2*r + dx)*i), (r + (2*r + dy)*(j+1))|] ; end; if (i < gr.width-1 && j < gr.height -1) && gr.g.(i).(j).edges.(4) <> (-1) then begin (* NE *) draw_poly_line [|node_xy; (r + (2*r + dx)*(i+1)), (r + (2*r + dy)*(j+1))|] ; end; if (i < gr.width-1) && gr.g.(i).(j).edges.(5) <> (-1) then begin (* E *) draw_poly_line [|node_xy; (r + (2*r + dx)*(i+1)), (r + (2*r + dy)*j)|] ; end; if (i < gr.width-1 && j > 0) && gr.g.(i).(j).edges.(6) <> (-1) then begin (* SE *) draw_poly_line [|node_xy; (r + (2*r + dx)*(i+1)), (r + (2*r + dy)*(j-1))|] ; end; if (j > 0) && gr.g.(i).(j).edges.(7) <> (-1) then begin (* S *) draw_poly_line [|node_xy; (r + (2*r + dx)*i), (r + (2*r + dy)*(j-1))|] ; end; done done; set_line_width 8; for i = 0 to gr.width -1 do for j = 0 to gr.height -1 do let node_xy = ((r + (2*r + dx)*i), (r + (2*r + dy)*j)) in if (i > 0 && j > 0) && gr.g.(i).(j).edges.(0) <> (-1) then begin (* SO *) draw_poly_line [|node_xy; (2 * (fst node_xy) + r + (2*r + dx)*(i-1))/3, (2 * (snd node_xy) + r + (2*r + dy)*(j-1))/3|] ; end; if (i > 0) && gr.g.(i).(j).edges.(1) <> (-1) then begin (* O *) draw_poly_line [|node_xy; (2 * (fst node_xy) + r + (2*r + dx)*(i-1))/3, (2 * (snd node_xy) + r + (2*r + dy)*j)/3|] ; end; if (i > 0 && j < gr.height -1) && gr.g.(i).(j).edges.(2) <> (-1) then begin (* NO *) draw_poly_line [|node_xy; (2 * (fst node_xy) + r + (2*r + dx)*(i-1))/3, (2 * (snd node_xy) + r + (2*r + dy)*(j+1))/3|] ; end; if (j < gr.height -1) && gr.g.(i).(j).edges.(3) <> (-1) then begin (* N *) draw_poly_line [|node_xy; (2 * (fst node_xy) + r + (2*r + dx)*i)/3, (2 * (snd node_xy) + r + (2*r + dy)*(j+1))/3|] ; end; if (i < gr.width-1 && j < gr.height -1) && gr.g.(i).(j).edges.(4) <> (-1) then begin (* NE *) draw_poly_line [|node_xy; (2 * (fst node_xy) + r + (2*r + dx)*(i+1))/3, (2 * (snd node_xy) + r + (2*r + dy)*(j+1))/3|] ; end; if (i < gr.width-1) && gr.g.(i).(j).edges.(5) <> (-1) then begin (* E *) draw_poly_line [|node_xy; (2 * (fst node_xy) + r + (2*r + dx)*(i+1))/3, (2 * (snd node_xy) + r + (2*r + dy)*j)/3|] ; end; if (i < gr.width-1 && j > 0) && gr.g.(i).(j).edges.(6) <> (-1) then begin (* SE *) draw_poly_line [|node_xy; (2 * (fst node_xy) + r + (2*r + dx)*(i+1))/3, (2 * (snd node_xy) + r + (2*r + dy)*(j-1))/3|] ; end; if (j > 0) && gr.g.(i).(j).edges.(7) <> (-1) then begin (* S *) draw_poly_line [|node_xy; (2 * (fst node_xy) + r + (2*r + dx)*i)/3, (2 * (snd node_xy) + r + (2*r + dy)*(j-1))/3|] ; end; done done; set_line_width 5; for i = 0 to gr.width -1 do for j = 0 to gr.height -1 do set_color (rgb 192 192 192) ; fill_circle (r + (2*r + dx)*i) (r + (2*r + dy)*j) r ; set_color (rgb 100 100 100) ; draw_circle (r + (2*r + dx)*i) (r + (2*r + dy)*j) r ; draw_integer (r + (2*r + dx)*i) (r + (2*r + dy)*j) gr.g.(i).(j).tag r done done ; let draw_tile i j = set_line_width 5; set_color (rgb 48 48 48) ; fill_circle (r + (2*r + dx)*i) (r + (2*r + dy)*j) r ; set_color black; draw_circle (r + (2*r + dx)*i) (r + (2*r + dy)*j) r ; set_color colors.(i).(j); draw_integer (r + (2*r + dx)*i) (r + (2*r + dy)*j) gr.g.(i).(j).tag r ; in (* Now for the actual DFS *) let visited = Array.make_matrix gr.width gr.height false in let rec explore i j depth = if visited.(i).(j) = false then begin visited.(i).(j) <- true; draw_tile i j; set_color white; fill_circle (r + (2*r + dx)*(gr.width/2)) (r + (2*r + dy)*(gr.height/2)) r; set_color black; draw_integer (r + (2*r + dx)*(gr.width/2)) (r + (2*r + dy)*(gr.height/2)) depth r; Unix.sleepf dt; let node_xy = ((r + (2*r + dx)*i), (r + (2*r + dy)*j)) in if (i > 0 && j > 0) && gr.g.(i).(j).edges.(0) <> (-1) && (visited.(i-1).(j-1) = false) then begin (* SO *) set_line_width 4; set_color black; draw_poly_line [|node_xy; (r + (2*r + dx)*(i-1)), (r + (2*r + dy)*(j-1))|] ; set_color colors.(i).(j); set_line_width 8; draw_poly_line [|node_xy; (2 * (fst node_xy) + r + (2*r + dx)*(i-1))/3, (2 * (snd node_xy) + r + (2*r + dy)*(j-1))/3|] ; draw_tile i j; explore (i-1) (j-1) (depth+1) ; end; if (i > 0) && gr.g.(i).(j).edges.(1) <> (-1) && (visited.(i-1).(j) = false) then begin (* O *) set_line_width 4; set_color black; draw_poly_line [|node_xy; (r + (2*r + dx)*(i-1)), (r + (2*r + dy)*j)|] ; set_color colors.(i).(j); set_line_width 8; draw_poly_line [|node_xy; (2 * (fst node_xy) + r + (2*r + dx)*(i-1))/3, (2 * (snd node_xy) + r + (2*r + dy)*j)/3|] ; draw_tile i j; explore (i-1) j (depth+1); end; if (i > 0 && j < gr.height -1) && gr.g.(i).(j).edges.(2) <> (-1) && (visited.(i-1).(j+1) = false) then begin (* NO *) set_line_width 4; set_color black; draw_poly_line [|node_xy; (r + (2*r + dx)*(i-1)), (r + (2*r + dy)*(j+1))|] ; set_color colors.(i).(j); set_line_width 8; draw_poly_line [|node_xy; (2 * (fst node_xy) + r + (2*r + dx)*(i-1))/3, (2 * (snd node_xy) + r + (2*r + dy)*(j+1))/3|] ; draw_tile i j; explore (i-1) (j+1) (depth+1); end; if (j < gr.height -1) && gr.g.(i).(j).edges.(3) <> (-1) && (visited.(i).(j+1) = false) then begin (* N *) set_line_width 4; set_color black; draw_poly_line [|node_xy; (r + (2*r + dx)*i), (r + (2*r + dy)*(j+1))|] ; set_color colors.(i).(j); set_line_width 8; draw_poly_line [|node_xy; (2 * (fst node_xy) + r + (2*r + dx)*i)/3, (2 * (snd node_xy) + r + (2*r + dy)*(j+1))/3|] ; draw_tile i j; explore i (j+1) (depth+1); end; if (i < gr.width-1 && j < gr.height -1) && gr.g.(i).(j).edges.(4) <> (-1) && (visited.(i+1).(j+1) = false) then begin (* NE *) set_line_width 4; set_color black; draw_poly_line [|node_xy; (r + (2*r + dx)*(i+1)), (r + (2*r + dy)*(j+1))|] ; set_color colors.(i).(j); set_line_width 8; draw_poly_line [|node_xy; (2 * (fst node_xy) + r + (2*r + dx)*(i+1))/3, (2 * (snd node_xy) + r + (2*r + dy)*(j+1))/3|] ; draw_tile i j; explore (i+1) (j+1) (depth+1); end; if (i < gr.width-1) && gr.g.(i).(j).edges.(5) <> (-1) && (visited.(i+1).(j) = false) then begin (* E *) set_line_width 4; set_color black; draw_poly_line [|node_xy; (r + (2*r + dx)*(i+1)), (r + (2*r + dy)*j)|] ; set_color colors.(i).(j); set_line_width 8; draw_poly_line [|node_xy; (2 * (fst node_xy) + r + (2*r + dx)*(i+1))/3, (2 * (snd node_xy) + r + (2*r + dy)*j)/3|] ; draw_tile i j; explore (i+1) j (depth+1); end; if (i < gr.width-1 && j > 0) && gr.g.(i).(j).edges.(6) <> (-1) && (visited.(i+1).(j-1) = false) then begin (* SE *) set_line_width 4; set_color black; draw_poly_line [|node_xy; (r + (2*r + dx)*(i+1)), (r + (2*r + dy)*(j-1))|] ; set_color colors.(i).(j); set_line_width 8; draw_poly_line [|node_xy; (2 * (fst node_xy) + r + (2*r + dx)*(i+1))/3, (2 * (snd node_xy) + r + (2*r + dy)*(j-1))/3|] ; draw_tile i j; explore (i+1) (j-1) (depth+1); end; if (j > 0) && gr.g.(i).(j).edges.(7) <> (-1) && (visited.(i).(j-1) = false) then begin (* S *) set_line_width 4; set_color black; draw_poly_line [|node_xy; (r + (2*r + dx)*i), (r + (2*r + dy)*(j-1))|] ; set_color colors.(i).(j); set_line_width 8; draw_poly_line [|node_xy; (2 * (fst node_xy) + r + (2*r + dx)*i)/3, (2 * (snd node_xy) + r + (2*r + dy)*(j-1))/3|] ; draw_tile i j; explore i (j-1) (depth+1); end; end in explore (gr.width/2) (gr.height/2) 0; ignore (Scanf.bscanf Scanf.Scanning.stdin "%d\n" identity) ;; (* ------------------------------------------------------------*) (* ------------------------------------------------------------*) (* ------------------------------------------------------------*) let another_type_of_bfs (gr : type2graph) r dx dy gwd ght dt = let colors = Array.make_matrix gr.width gr.height (rgb 0 0 0) in for i = 0 to gr.width -1 do for j = 0 to gr.height -1 do if (i*gr.width + j) mod 6 = 0 then colors.(i).(j) <- rgb 0 0 200 else if (i*gr.width + j) mod 6 = 1 then colors.(i).(j) <- rgb 0 200 0 else if (i*gr.width + j) mod 6 = 2 then colors.(i).(j) <- rgb 0 200 200 else if (i*gr.width + j) mod 6 = 3 then colors.(i).(j) <- rgb 200 0 0 else if (i*gr.width + j) mod 6 = 4 then colors.(i).(j) <- rgb 200 0 200 else colors.(i).(j) <- rgb 200 200 0 done done; set_line_width 4; set_color (rgb 192 192 192) ; for i = 0 to gr.width -1 do for j = 0 to gr.height -1 do let node_xy = ((r + (2*r + dx)*i), (r + (2*r + dy)*j)) in if (i > 0 && j > 0) && gr.g.(i).(j).edges.(0) <> (-1) then begin (* SO *) draw_poly_line [|node_xy; (r + (2*r + dx)*(i-1)), (r + (2*r + dy)*(j-1))|] ; end; if (i > 0) && gr.g.(i).(j).edges.(1) <> (-1) then begin (* O *) draw_poly_line [|node_xy; (r + (2*r + dx)*(i-1)), (r + (2*r + dy)*j)|] ; end; if (i > 0 && j < gr.height -1) && gr.g.(i).(j).edges.(2) <> (-1) then begin (* NO *) draw_poly_line [|node_xy; (r + (2*r + dx)*(i-1)), (r + (2*r + dy)*(j+1))|] ; end; if (j < gr.height -1) && gr.g.(i).(j).edges.(3) <> (-1) then begin (* N *) draw_poly_line [|node_xy; (r + (2*r + dx)*i), (r + (2*r + dy)*(j+1))|] ; end; if (i < gr.width-1 && j < gr.height -1) && gr.g.(i).(j).edges.(4) <> (-1) then begin (* NE *) draw_poly_line [|node_xy; (r + (2*r + dx)*(i+1)), (r + (2*r + dy)*(j+1))|] ; end; if (i < gr.width-1) && gr.g.(i).(j).edges.(5) <> (-1) then begin (* E *) draw_poly_line [|node_xy; (r + (2*r + dx)*(i+1)), (r + (2*r + dy)*j)|] ; end; if (i < gr.width-1 && j > 0) && gr.g.(i).(j).edges.(6) <> (-1) then begin (* SE *) draw_poly_line [|node_xy; (r + (2*r + dx)*(i+1)), (r + (2*r + dy)*(j-1))|] ; end; if (j > 0) && gr.g.(i).(j).edges.(7) <> (-1) then begin (* S *) draw_poly_line [|node_xy; (r + (2*r + dx)*i), (r + (2*r + dy)*(j-1))|] ; end; done done; set_line_width 8; for i = 0 to gr.width -1 do for j = 0 to gr.height -1 do let node_xy = ((r + (2*r + dx)*i), (r + (2*r + dy)*j)) in if (i > 0 && j > 0) && gr.g.(i).(j).edges.(0) <> (-1) then begin (* SO *) draw_poly_line [|node_xy; (2 * (fst node_xy) + r + (2*r + dx)*(i-1))/3, (2 * (snd node_xy) + r + (2*r + dy)*(j-1))/3|] ; end; if (i > 0) && gr.g.(i).(j).edges.(1) <> (-1) then begin (* O *) draw_poly_line [|node_xy; (2 * (fst node_xy) + r + (2*r + dx)*(i-1))/3, (2 * (snd node_xy) + r + (2*r + dy)*j)/3|] ; end; if (i > 0 && j < gr.height -1) && gr.g.(i).(j).edges.(2) <> (-1) then begin (* NO *) draw_poly_line [|node_xy; (2 * (fst node_xy) + r + (2*r + dx)*(i-1))/3, (2 * (snd node_xy) + r + (2*r + dy)*(j+1))/3|] ; end; if (j < gr.height -1) && gr.g.(i).(j).edges.(3) <> (-1) then begin (* N *) draw_poly_line [|node_xy; (2 * (fst node_xy) + r + (2*r + dx)*i)/3, (2 * (snd node_xy) + r + (2*r + dy)*(j+1))/3|] ; end; if (i < gr.width-1 && j < gr.height -1) && gr.g.(i).(j).edges.(4) <> (-1) then begin (* NE *) draw_poly_line [|node_xy; (2 * (fst node_xy) + r + (2*r + dx)*(i+1))/3, (2 * (snd node_xy) + r + (2*r + dy)*(j+1))/3|] ; end; if (i < gr.width-1) && gr.g.(i).(j).edges.(5) <> (-1) then begin (* E *) draw_poly_line [|node_xy; (2 * (fst node_xy) + r + (2*r + dx)*(i+1))/3, (2 * (snd node_xy) + r + (2*r + dy)*j)/3|] ; end; if (i < gr.width-1 && j > 0) && gr.g.(i).(j).edges.(6) <> (-1) then begin (* SE *) draw_poly_line [|node_xy; (2 * (fst node_xy) + r + (2*r + dx)*(i+1))/3, (2 * (snd node_xy) + r + (2*r + dy)*(j-1))/3|] ; end; if (j > 0) && gr.g.(i).(j).edges.(7) <> (-1) then begin (* S *) draw_poly_line [|node_xy; (2 * (fst node_xy) + r + (2*r + dx)*i)/3, (2 * (snd node_xy) + r + (2*r + dy)*(j-1))/3|] ; end; done done; set_line_width 5; for i = 0 to gr.width -1 do for j = 0 to gr.height -1 do set_color (rgb 192 192 192) ; fill_circle (r + (2*r + dx)*i) (r + (2*r + dy)*j) r ; set_color (rgb 100 100 100) ; draw_circle (r + (2*r + dx)*i) (r + (2*r + dy)*j) r ; draw_integer (r + (2*r + dx)*i) (r + (2*r + dy)*j) gr.g.(i).(j).tag r done done ; let draw_tile i j = set_line_width 5; set_color (rgb 48 48 48) ; fill_circle (r + (2*r + dx)*i) (r + (2*r + dy)*j) r ; set_color black; draw_circle (r + (2*r + dx)*i) (r + (2*r + dy)*j) r ; set_color colors.(i).(j); draw_integer (r + (2*r + dx)*i) (r + (2*r + dy)*j) gr.g.(i).(j).tag r ; in (* Actual BFS *) let pq = Queue.create () in Queue.add (0, gr.width/2, gr.height/2, gr.width/2, gr.height/2, [||], [||]) pq ; let visited = Array.make_matrix gr.width gr.height false in try while true do let (depth, i0, j0, i, j, path_arr, bigpath_arr) = Queue.take pq in if visited.(i).(j) = false then begin set_line_width 4; set_color black; draw_poly_line path_arr ; set_color colors.(i).(j); set_line_width 8; draw_poly_line bigpath_arr ; draw_tile i j; set_color colors.(i0).(j0) ; draw_tile i0 j0; visited.(i).(j) <- true; set_color white; fill_circle (r + (2*r + dx)*(gr.width/2)) (r + (2*r + dy)*(gr.height/2)) r; set_color black; draw_integer (r + (2*r + dx)*(gr.width/2)) (r + (2*r + dy)*(gr.height/2)) depth r; Unix.sleepf dt; let node_xy = ((r + (2*r + dx)*i), (r + (2*r + dy)*j)) in if (i > 0 && j > 0) && gr.g.(i).(j).edges.(0) <> (-1) && (visited.(i-1).(j-1) = false) then begin (* SO *) Queue.add (depth+1, i, j, i-1, j-1, [|node_xy; (r + (2*r + dx)*(i-1)), (r + (2*r + dy)*(j-1))|], [|node_xy; (2 * (fst node_xy) + r + (2*r + dx)*(i-1))/3, (2 * (snd node_xy) + r + (2*r + dy)*(j-1))/3|]) pq; end; if (i > 0) && gr.g.(i).(j).edges.(1) <> (-1) && (visited.(i-1).(j) = false) then begin (* O *) Queue.add (depth+1, i, j, i-1, j, [|node_xy; (r + (2*r + dx)*(i-1)), (r + (2*r + dy)*j)|], [|node_xy; (2 * (fst node_xy) + r + (2*r + dx)*(i-1))/3, (2 * (snd node_xy) + r + (2*r + dy)*j)/3|]) pq; end; if (i > 0 && j < gr.height -1) && gr.g.(i).(j).edges.(2) <> (-1) && (visited.(i-1).(j+1) = false) then begin (* NO *) Queue.add (depth+1, i, j, i-1, j+1, [|node_xy; (r + (2*r + dx)*(i-1)), (r + (2*r + dy)*(j+1))|], [|node_xy; (2 * (fst node_xy) + r + (2*r + dx)*(i-1))/3, (2 * (snd node_xy) + r + (2*r + dy)*(j+1))/3|]) pq; end; if (j < gr.height -1) && gr.g.(i).(j).edges.(3) <> (-1) && (visited.(i).(j+1) = false) then begin (* N *) Queue.add (depth+1, i, j, i, j+1, [|node_xy; (r + (2*r + dx)*i), (r + (2*r + dy)*(j+1))|], [|node_xy; (2 * (fst node_xy) + r + (2*r + dx)*i)/3, (2 * (snd node_xy) + r + (2*r + dy)*(j+1))/3|]) pq; end; if (i < gr.width-1 && j < gr.height -1) && gr.g.(i).(j).edges.(4) <> (-1) && (visited.(i+1).(j+1) = false) then begin (* NE *) Queue.add (depth+1, i, j, i+1, j+1, [|node_xy; (r + (2*r + dx)*(i+1)), (r + (2*r + dy)*(j+1))|], [|node_xy; (2 * (fst node_xy) + r + (2*r + dx)*(i+1))/3, (2 * (snd node_xy) + r + (2*r + dy)*(j+1))/3|]) pq; end; if (i < gr.width-1) && gr.g.(i).(j).edges.(5) <> (-1) && (visited.(i+1).(j) = false) then begin (* E *) Queue.add (depth+1, i, j, i+1, j, [|node_xy; (r + (2*r + dx)*(i+1)), (r + (2*r + dy)*j)|], [|node_xy; (2 * (fst node_xy) + r + (2*r + dx)*(i+1))/3, (2 * (snd node_xy) + r + (2*r + dy)*j)/3|]) pq; end; if (i < gr.width-1 && j > 0) && gr.g.(i).(j).edges.(6) <> (-1) && (visited.(i+1).(j-1) = false) then begin (* SE *) Queue.add (depth+1, i, j, i+1, j-1, [|node_xy; (r + (2*r + dx)*(i+1)), (r + (2*r + dy)*(j-1))|], [|node_xy; (2 * (fst node_xy) + r + (2*r + dx)*(i+1))/3, (2 * (snd node_xy) + r + (2*r + dy)*(j-1))/3|]) pq; end; if (j > 0) && gr.g.(i).(j).edges.(7) <> (-1) && (visited.(i).(j-1) = false) then begin (* S *) Queue.add (depth+1, i, j, i, j-1, [|node_xy; (r + (2*r + dx)*i), (r + (2*r + dy)*(j-1))|], [|node_xy; (2 * (fst node_xy) + r + (2*r + dx)*i)/3, (2 * (snd node_xy) + r + (2*r + dy)*(j-1))/3|]) pq; end end; done; () with | Stdlib.Queue.Empty -> ignore (Scanf.bscanf Scanf.Scanning.stdin "%d\n" identity) ;; (* ------------------------------------------------------------*) (* ------------------------------------------------------------*) (* ------------------------------------------------------------*) (* ------------------------------------------------------------*) (* ------------------------------------------------------------*) type 'a dynamic_array = { mutable arr : 'a array ; mutable len : int } ;; let create () = { arr = [||] ; len = 0 } ;; let init a = { arr = a ; len = Array.length a } ;; let length a = a.len ;; let get a i = assert(0 <= i && i < a.len) ; a.arr.(i) ;; let set a i x = assert(0 <= i && i < a.len) ; a.arr.(i) <- x ;; let resize a newlen e = a.arr <- Array.init newlen (fun i -> if i < a.len then a.arr.(i) else e) ;; let append a e = if a.len = Array.length a.arr then resize a (a.len * 2 + 1) e ; a.arr.(a.len) <- e ; a.len <- a.len + 1 ;; let pop a = assert(a.len > 0) ; a.len <- a.len - 1 ; let x = a.arr.(a.len) in if a.len < (Array.length a.arr) / 4 then resize a (a.len * 2) a.arr.(0) ; x ;; module H = Hashtbl ;; (* 'a : type for elements 'b : type for priorities (hypothesis : totally ordered type). *) type ('a, 'b) priority_queue = { heap : ('a * 'b) dynamic_array ; locate : ('a, int) H.t } ;; let pq_create () = { heap = create () ; locate = H.create 200 } ;; let pq_is_empty pq = length pq.heap = 0 ;; let pq_mem pq elt = H.mem pq.locate elt ;; (* SWAPS indexes i and j in the heap AND the hash table : *) let pq_swap pq i j = let elt1 = fst (get pq.heap i) and elt2 = fst (get pq.heap j) in let tmp = (get pq.heap i) in set pq.heap i (get pq.heap j) ; set pq.heap j tmp ; H.replace pq.locate elt1 j ; H.replace pq.locate elt2 i ;; (* PERCOLATE UP AND DOWN *) let pq_get_priority pq i = snd (get pq.heap i) ;; let rec pq_percolate_up pq i = let father = ((i-1)/2) in if i > 0 && (pq_get_priority pq i) < (pq_get_priority pq father) then begin pq_swap pq i father ; pq_percolate_up pq father end ;; let rec pq_percolate_down pq i = let n = length pq.heap in let left_child = 2*i+1 and right_child = 2*i+2 in let m = ref (pq_get_priority pq i) in let max_node = ref i in if left_child < n && pq_get_priority pq left_child < !m then begin m := pq_get_priority pq left_child ; max_node := left_child end ; if right_child < n && pq_get_priority pq right_child < !m then begin m := pq_get_priority pq right_child ; max_node := right_child end ; if !max_node <> i then pq_swap pq i !max_node ;; (* ACTUAL FUNCTIONS *) exception BreakOfLoop ;; let pq_add elt pq prio = append pq.heap (elt, prio) ; H.add pq.locate elt (length pq.heap - 1) ; pq_percolate_up pq (length pq.heap - 1) ;; let pq_min pq = assert(length pq.heap > 0 ) ; get pq.heap 0 ;; let pq_extract_min pq = let n = length pq.heap in if n <= 0 then raise BreakOfLoop; pq_swap pq 0 (n-1) ; let (elt, prio) = pop pq.heap in H.remove pq.locate elt ; if n > 1 then pq_percolate_down pq 0 ; (elt, prio) ;; let pq_priority pq elt = pq_get_priority pq (H.find pq.locate elt) ;; let pq_update_priority pq elt prio = let index = H.find pq.locate elt in let p = pq_get_priority pq index in set pq.heap index (elt, prio) ; if p > prio then pq_percolate_up pq index else pq_percolate_down pq index ;; let pq_init a default_priority = let pq = pq_create () in Array.iter (fun x -> pq_add x pq default_priority) a ; pq ;; (* ------------------------------------------------------------*) (* ------------------------------------------------------------*) (* ------------------------------------------------------------*) let another_type_of_dijkstra (gr : type2graph) r dx dy dt gwd ght = let colors = Array.make_matrix gr.width gr.height (rgb 0 0 0) in for i = 0 to gr.width -1 do for j = 0 to gr.height -1 do if (i*gr.width + j) mod 7 = 0 then colors.(i).(j) <- rgb 0 0 200 else if (i*gr.width + j) mod 7 = 1 then colors.(i).(j) <- rgb 0 200 0 else if (i*gr.width + j) mod 7 = 2 then colors.(i).(j) <- rgb 0 200 200 else if (i*gr.width + j) mod 7 = 3 then colors.(i).(j) <- rgb 200 0 0 else if (i*gr.width + j) mod 7 = 4 then colors.(i).(j) <- rgb 200 0 200 else if (i*gr.width + j) mod 7 = 5 then colors.(i).(j) <- rgb 200 200 0 else colors.(i).(j) <- rgb 200 200 200 done done; set_line_width 4; set_color black ; for i = 0 to gr.width -1 do for j = 0 to gr.height -1 do let node_xy = ((r + (2*r + dx)*i), (r + (2*r + dy)*j)) in if (i > 0 && j > 0) && gr.g.(i).(j).edges.(0) <> (-1) then begin (* SO *) draw_poly_line [|node_xy; (r + (2*r + dx)*(i-1)), (r + (2*r + dy)*(j-1))|] ; end; if (i > 0) && gr.g.(i).(j).edges.(1) <> (-1) then begin (* O *) draw_poly_line [|node_xy; (r + (2*r + dx)*(i-1)), (r + (2*r + dy)*j)|] ; end; if (i > 0 && j < gr.height -1) && gr.g.(i).(j).edges.(2) <> (-1) then begin (* NO *) draw_poly_line [|node_xy; (r + (2*r + dx)*(i-1)), (r + (2*r + dy)*(j+1))|] ; end; if (j < gr.height -1) && gr.g.(i).(j).edges.(3) <> (-1) then begin (* N *) draw_poly_line [|node_xy; (r + (2*r + dx)*i), (r + (2*r + dy)*(j+1))|] ; end; if (i < gr.width-1 && j < gr.height -1) && gr.g.(i).(j).edges.(4) <> (-1) then begin (* NE *) draw_poly_line [|node_xy; (r + (2*r + dx)*(i+1)), (r + (2*r + dy)*(j+1))|] ; end; if (i < gr.width-1) && gr.g.(i).(j).edges.(5) <> (-1) then begin (* E *) draw_poly_line [|node_xy; (r + (2*r + dx)*(i+1)), (r + (2*r + dy)*j)|] ; end; if (i < gr.width-1 && j > 0) && gr.g.(i).(j).edges.(6) <> (-1) then begin (* SE *) draw_poly_line [|node_xy; (r + (2*r + dx)*(i+1)), (r + (2*r + dy)*(j-1))|] ; end; if (j > 0) && gr.g.(i).(j).edges.(7) <> (-1) then begin (* S *) draw_poly_line [|node_xy; (r + (2*r + dx)*i), (r + (2*r + dy)*(j-1))|] ; end; done done; let roff = (9*r)/8 in let roff2 = (7*r)/5 in let rsize = (3*r)/4 in let wcolor = rgb 64 64 64 in let bcolor = rgb 0 0 0 in let is_weighted = true in set_line_width 8; for i = 0 to gr.width -1 do for j = 0 to gr.height -1 do let node_xy = ((r + (2*r + dx)*i), (r + (2*r + dy)*j)) in if (i > 0 && j > 0) && gr.g.(i).(j).edges.(0) <> (-1) then begin (* SO *) if is_weighted then begin set_color bcolor; fill_circle (fst node_xy - roff) (snd node_xy - roff) (3*rsize/4) ; set_color wcolor; set_line_width 3; draw_integer (fst node_xy - roff) (snd node_xy - roff) gr.g.(i).(j).edges.(0) rsize; end end; if (i > 0) && gr.g.(i).(j).edges.(1) <> (-1) then begin (* O *) if is_weighted then begin set_color bcolor; fill_circle (fst node_xy - roff2) (snd node_xy) (3*rsize/4) ; set_color wcolor; set_line_width 3; draw_integer (fst node_xy - roff2) (snd node_xy) gr.g.(i).(j).edges.(1) rsize; end end; if (i > 0 && j < gr.height -1) && gr.g.(i).(j).edges.(2) <> (-1) then begin (* NO *) if is_weighted then begin set_color bcolor; fill_circle (fst node_xy - roff) (snd node_xy + roff) (3*rsize/4) ; set_color wcolor; set_line_width 3; draw_integer (fst node_xy - roff) (snd node_xy + roff) gr.g.(i).(j).edges.(2) rsize; end end; if (j < gr.height -1) && gr.g.(i).(j).edges.(3) <> (-1) then begin (* N *) if is_weighted then begin set_color bcolor; fill_circle (fst node_xy) (snd node_xy + roff2) (3*rsize/4) ; set_color wcolor; set_line_width 3; draw_integer (fst node_xy) (snd node_xy + roff2) gr.g.(i).(j).edges.(3) rsize; end end; if (i < gr.width-1 && j < gr.height -1) && gr.g.(i).(j).edges.(4) <> (-1) then begin (* NE *) if is_weighted then begin set_color bcolor; fill_circle (fst node_xy + roff) (snd node_xy + roff) (3*rsize/4) ; set_color wcolor; set_line_width 3; draw_integer (fst node_xy + roff) (snd node_xy + roff) gr.g.(i).(j).edges.(4) rsize; end end; if (i < gr.width-1) && gr.g.(i).(j).edges.(5) <> (-1) then begin (* E *) if is_weighted then begin set_color bcolor; fill_circle (fst node_xy + roff2) (snd node_xy) (3*rsize/4) ; set_color wcolor; set_line_width 3; draw_integer (fst node_xy + roff2) (snd node_xy) gr.g.(i).(j).edges.(5) rsize; end end; if (i < gr.width-1 && j > 0) && gr.g.(i).(j).edges.(6) <> (-1) then begin (* SE *) if is_weighted then begin set_color bcolor; fill_circle (fst node_xy + roff) (snd node_xy - roff) (3*rsize/4) ; set_color wcolor; set_line_width 3; draw_integer (fst node_xy + roff) (snd node_xy - roff) gr.g.(i).(j).edges.(6) rsize; end end; if (j > 0) && gr.g.(i).(j).edges.(7) <> (-1) then begin (* S *) if is_weighted then begin set_color bcolor; fill_circle (fst node_xy) (snd node_xy - roff2) (3*rsize/4) ; set_color wcolor; set_line_width 3; draw_integer (fst node_xy) (snd node_xy - roff2) gr.g.(i).(j).edges.(7) rsize; end end; done done; set_line_width 5; for i = 0 to gr.width -1 do for j = 0 to gr.height -1 do set_color (rgb 48 48 48) ; fill_circle (r + (2*r + dx)*i) (r + (2*r + dy)*j) r ; set_color black ; draw_circle (r + (2*r + dx)*i) (r + (2*r + dy)*j) r ; set_color (rgb 48 48 48) ; draw_integer (r + (2*r + dx)*i) (r + (2*r + dy)*j) gr.g.(i).(j).tag r done done ; let draw_tile i j = set_line_width 5; set_color (rgb 48 48 48) ; fill_circle (r + (2*r + dx)*i) (r + (2*r + dy)*j) r ; set_color black; draw_circle (r + (2*r + dx)*i) (r + (2*r + dy)*j) r ; set_color colors.(i).(j); draw_integer (r + (2*r + dx)*i) (r + (2*r + dy)*j) gr.g.(i).(j).tag r ; let fcolor = rgb 255 0 0 in let node_xy = ((r + (2*r + dx)*i), (r + (2*r + dy)*j)) in if (i > 0 && j > 0) && gr.g.(i).(j).edges.(0) <> (-1) then begin (* SO *) if is_weighted then begin set_color bcolor; fill_circle (fst node_xy - roff) (snd node_xy - roff) (3*rsize/4) ; set_color fcolor; set_line_width 3; draw_integer (fst node_xy - roff) (snd node_xy - roff) gr.g.(i).(j).edges.(0) rsize; end end; if (i > 0) && gr.g.(i).(j).edges.(1) <> (-1) then begin (* O *) if is_weighted then begin set_color bcolor; fill_circle (fst node_xy - roff2) (snd node_xy) (3*rsize/4) ; set_color fcolor; set_line_width 3; draw_integer (fst node_xy - roff2) (snd node_xy) gr.g.(i).(j).edges.(1) rsize; end end; if (i > 0 && j < gr.height -1) && gr.g.(i).(j).edges.(2) <> (-1) then begin (* NO *) if is_weighted then begin set_color bcolor; fill_circle (fst node_xy - roff) (snd node_xy + roff) (3*rsize/4) ; set_color fcolor; set_line_width 3; draw_integer (fst node_xy - roff) (snd node_xy + roff) gr.g.(i).(j).edges.(2) rsize; end end; if (j < gr.height -1) && gr.g.(i).(j).edges.(3) <> (-1) then begin (* N *) if is_weighted then begin set_color bcolor; fill_circle (fst node_xy) (snd node_xy + roff2) (3*rsize/4) ; set_color fcolor; set_line_width 3; draw_integer (fst node_xy) (snd node_xy + roff2) gr.g.(i).(j).edges.(3) rsize; end end; if (i < gr.width-1 && j < gr.height -1) && gr.g.(i).(j).edges.(4) <> (-1) then begin (* NE *) if is_weighted then begin set_color bcolor; fill_circle (fst node_xy + roff) (snd node_xy + roff) (3*rsize/4) ; set_color fcolor; set_line_width 3; draw_integer (fst node_xy + roff) (snd node_xy + roff) gr.g.(i).(j).edges.(4) rsize; end end; if (i < gr.width-1) && gr.g.(i).(j).edges.(5) <> (-1) then begin (* E *) if is_weighted then begin set_color bcolor; fill_circle (fst node_xy + roff2) (snd node_xy) (3*rsize/4) ; set_color fcolor; set_line_width 3; draw_integer (fst node_xy + roff2) (snd node_xy) gr.g.(i).(j).edges.(5) rsize; end end; if (i < gr.width-1 && j > 0) && gr.g.(i).(j).edges.(6) <> (-1) then begin (* SE *) if is_weighted then begin set_color bcolor; fill_circle (fst node_xy + roff) (snd node_xy - roff) (3*rsize/4) ; set_color fcolor; set_line_width 3; draw_integer (fst node_xy + roff) (snd node_xy - roff) gr.g.(i).(j).edges.(6) rsize; end end; if (j > 0) && gr.g.(i).(j).edges.(7) <> (-1) then begin (* S *) if is_weighted then begin set_color bcolor; fill_circle (fst node_xy) (snd node_xy - roff2) (3*rsize/4) ; set_color fcolor; set_line_width 3; draw_integer (fst node_xy) (snd node_xy - roff2) gr.g.(i).(j).edges.(7) rsize; end end; in (* Actual BFS *) let pq = pq_create () in pq_add (gr.width/2, gr.height/2, gr.width/2, gr.height/2, [||], [||]) pq 0 ; let drawn = Array.make_matrix gr.width gr.height false in let loops = Array.make_matrix gr.width gr.height [||] in for i = 0 to gr.width-1 do for j = 0 to gr.height-1 do loops.(i).(j) <- Array.make 8 false; done done; let dcolor = rgb 0 255 0 in let done_smth = ref true in let mindists = Array.make_matrix gr.width gr.height 999 in try while true do done_smth := false; let ((i0, j0, i, j, path_arr, bigpath_arr), depth) = pq_extract_min pq in if true then begin if drawn.(i).(j) = false then begin drawn.(i).(j) <- true; draw_tile i j; done_smth := true; end; if drawn.(i0).(j0) = false then begin drawn.(i0).(j0) <- true; draw_tile i0 j0; done_smth := true; end; if mindists.(i).(j) > depth then begin mindists.(i).(j) <- depth; set_color (rgb 48 48 48) ; fill_circle (r + (2*r + dx)*i) (r + (2*r + dy)*j) r ; set_color black ; draw_circle (r + (2*r + dx)*i) (r + (2*r + dy)*j) r ; set_color colors.(i).(j); draw_integer (r + (2*r + dx)*i) (r + (2*r + dy)*j) depth r end; let node_xy = ((r + (2*r + dx)*i0), (r + (2*r + dy)*j0)) in let dxx = i - i0 and dyy = j - j0 in if (dxx, dyy) = (1, 1) then begin set_color dcolor; set_line_width 3; draw_integer (fst node_xy + roff) (snd node_xy + roff) gr.g.(i0).(j0).edges.(4) rsize; done_smth := true; end else if (dxx, dyy) = (1, 0) then begin set_color dcolor; set_line_width 3; draw_integer (fst node_xy + roff2) (snd node_xy) gr.g.(i0).(j0).edges.(5) rsize; done_smth := true; end else if (dxx, dyy) = (1, -1) then begin set_color dcolor; set_line_width 3; draw_integer (fst node_xy + roff) (snd node_xy - roff) gr.g.(i0).(j0).edges.(6) rsize; done_smth := true; end else if (dxx, dyy) = (0, -1) then begin set_color dcolor; set_line_width 3; draw_integer (fst node_xy) (snd node_xy - roff2) gr.g.(i0).(j0).edges.(7) rsize; done_smth := true; end else if (dxx, dyy) = (-1, -1) then begin set_color dcolor; set_line_width 3; draw_integer (fst node_xy - roff) (snd node_xy - roff) gr.g.(i0).(j0).edges.(0) rsize; done_smth := true; end else if (dxx, dyy) = (-1, 0) then begin set_color dcolor; set_line_width 3; draw_integer (fst node_xy - roff2) (snd node_xy) gr.g.(i0).(j0).edges.(1) rsize; done_smth := true; end else if (dxx, dyy) = (-1, 1) then begin set_color dcolor; set_line_width 3; draw_integer (fst node_xy - roff) (snd node_xy + roff) gr.g.(i0).(j0).edges.(2) rsize; done_smth := true; end else if (dxx, dyy) = (0, 1) then begin set_color dcolor; set_line_width 3; draw_integer (fst node_xy) (snd node_xy + roff2) gr.g.(i0).(j0).edges.(3) rsize; done_smth := true; end; set_color white; fill_circle (r + (2*r + dx)*(gr.width/2)) (r + (2*r + dy)*(gr.height/2)) r; set_color black; draw_integer (r + (2*r + dx)*(gr.width/2)) (r + (2*r + dy)*(gr.height/2)) depth r; if !done_smth then Unix.sleepf dt; let node_xy = ((r + (2*r + dx)*i), (r + (2*r + dy)*j)) in if (i > 0 && j > 0) && gr.g.(i).(j).edges.(0) <> (-1) && ((i >= 0) && (j >= 0) && (i < gr.width) && (j < gr.height)) && loops.(i).(j).(0) = false then begin (* SO *) loops.(i).(j).(0) <- true; pq_add (i, j, i-1, j-1, [|node_xy; (r + (2*r + dxx)*(i-1)), (r + (2*r + dyy)*(j-1))|], [|node_xy; (2 * (fst node_xy) + r + (2*r + dxx)*(i-1))/3, (2 * (snd node_xy) + r + (2*r + dyy)*(j-1))/3|]) pq (depth+gr.g.(i).(j).edges.(0)); end; if (i > 0) && gr.g.(i).(j).edges.(1) <> (-1) && ((i >= 0) && (j >= 0) && (i < gr.width) && (j < gr.height)) && loops.(i).(j).(1) = false then begin (* O *) loops.(i).(j).(1) <- true; pq_add (i, j, i-1, j, [|node_xy; (r + (2*r + dxx)*(i-1)), (r + (2*r + dyy)*j)|], [|node_xy; (2 * (fst node_xy) + r + (2*r + dxx)*(i-1))/3, (2 * (snd node_xy) + r + (2*r + dyy)*j)/3|]) pq (depth+gr.g.(i).(j).edges.(1)); end; if (i > 0 && j < gr.height -1) && gr.g.(i).(j).edges.(2) <> (-1) && ((i >= 0) && (j >= 0) && (i < gr.width) && (j < gr.height)) && loops.(i).(j).(2) = false then begin (* NO *) loops.(i).(j).(2) <- true; pq_add (i, j, i-1, j+1, [|node_xy; (r + (2*r + dxx)*(i-1)), (r + (2*r + dyy)*(j+1))|], [|node_xy; (2 * (fst node_xy) + r + (2*r + dxx)*(i-1))/3, (2 * (snd node_xy) + r + (2*r + dyy)*(j+1))/3|]) pq (depth+gr.g.(i).(j).edges.(2)); end; if (j < gr.height -1) && gr.g.(i).(j).edges.(3) <> (-1) && ((i >= 0) && (j >= 0) && (i < gr.width) && (j < gr.height)) && loops.(i).(j).(3) = false then begin (* N *) loops.(i).(j).(3) <- true; pq_add (i, j, i, j+1, [|node_xy; (r + (2*r + dxx)*i), (r + (2*r + dyy)*(j+1))|], [|node_xy; (2 * (fst node_xy) + r + (2*r + dxx)*i)/3, (2 * (snd node_xy) + r + (2*r + dyy)*(j+1))/3|]) pq (depth+gr.g.(i).(j).edges.(3)); end; if (i < gr.width-1 && j < gr.height -1) && gr.g.(i).(j).edges.(4) <> (-1) && ((i >= 0) && (j >= 0) && (i < gr.width) && (j < gr.height)) && loops.(i).(j).(4) = false then begin (* NE *) loops.(i).(j).(4) <- true; pq_add (i, j, i+1, j+1, [|node_xy; (r + (2*r + dxx)*(i+1)), (r + (2*r + dyy)*(j+1))|], [|node_xy; (2 * (fst node_xy) + r + (2*r + dxx)*(i+1))/3, (2 * (snd node_xy) + r + (2*r + dyy)*(j+1))/3|]) pq (depth+gr.g.(i).(j).edges.(4)); end; if (i < gr.width-1) && gr.g.(i).(j).edges.(5) <> (-1) && ((i >= 0) && (j >= 0) && (i < gr.width) && (j < gr.height)) && loops.(i).(j).(5) = false then begin (* E *) loops.(i).(j).(5) <- true; pq_add (i, j, i+1, j, [|node_xy; (r + (2*r + dxx)*(i+1)), (r + (2*r + dyy)*j)|], [|node_xy; (2 * (fst node_xy) + r + (2*r + dxx)*(i+1))/3, (2 * (snd node_xy) + r + (2*r + dyy)*j)/3|]) pq (depth+gr.g.(i).(j).edges.(5)); end; if (i < gr.width-1 && j > 0) && gr.g.(i).(j).edges.(6) <> (-1) && ((i >= 0) && (j >= 0) && (i < gr.width) && (j < gr.height)) && loops.(i).(j).(6) = false then begin (* SE *) loops.(i).(j).(6) <- true; pq_add (i, j, i+1, j-1, [|node_xy; (r + (2*r + dxx)*(i+1)), (r + (2*r + dyy)*(j-1))|], [|node_xy; (2 * (fst node_xy) + r + (2*r + dxx)*(i+1))/3, (2 * (snd node_xy) + r + (2*r + dyy)*(j-1))/3|]) pq (depth+gr.g.(i).(j).edges.(6)); end; if (j > 0) && gr.g.(i).(j).edges.(7) <> (-1) && ((i >= 0) && (j >= 0) && (i < gr.width) && (j < gr.height)) && loops.(i).(j).(7) = false then begin (* S *) loops.(i).(j).(7) <- true; pq_add (i, j, i, j-1, [|node_xy; (r + (2*r + dxx)*i), (r + (2*r + dyy)*(j-1))|], [|node_xy; (2 * (fst node_xy) + r + (2*r + dxx)*i)/3, (2 * (snd node_xy) + r + (2*r + dyy)*(j-1))/3|]) pq (depth+gr.g.(i).(j).edges.(7)); end end; done; () with | BreakOfLoop -> ignore (Scanf.bscanf Scanf.Scanning.stdin "%d\n" identity) ;; (* ------------------------------------------------------------*) (* ------------------------------------------------------------*) (* ------------------------------------------------------------*) (* ----------------------- Tests --------------------------- *) let main r = Stdlib.print_endline "Enter the width of the graph (use 8 for weighted): "; let wd = Scanf.bscanf Scanf.Scanning.stdin "%d\n" identity in if wd <= 0 then failwith "Error : invalid input"; Stdlib.print_endline "Enter the height of the graph (use 6 for weighted): "; let ht = Scanf.bscanf Scanf.Scanning.stdin "%d\n" identity in if ht <= 0 then failwith "Error : invalid input"; Stdlib.print_endline "Is the grap weighted ? (0/1)"; let is_weighted = Scanf.bscanf Scanf.Scanning.stdin "%d\n" identity in let weighted = ref false in if is_weighted = 1 then weighted := true; Stdlib.print_endline "Enter the mode :\n0 for display\n1 for BFS\n2 for DFS\n3 for Dijkstra\n"; let choice = Scanf.bscanf Scanf.Scanning.stdin "%d\n" identity in open_graph " 1500x1000" ; set_window_title "Graphs" ; let gwd = 1500-r and ght = 1000-r in let offset_x = (gwd - r)/(wd-1) - 2*r in let offset_y = (ght - r)/(ht-1) - 2*r in let type2 = generate_type2_graph wd ht r 1 60 in let dt = 0.25 in if choice = 0 then begin another_type_of_graph_printing type2 r offset_x offset_y !weighted; close_graph () end else if choice = 1 then begin another_type_of_dfs type2 r offset_x offset_y dt ; close_graph () end else if choice = 2 then begin another_type_of_bfs type2 r offset_x offset_y gwd ght dt ; close_graph () end else if choice = 3 then begin another_type_of_dijkstra type2 r offset_x offset_y dt gwd ght ; close_graph () end else failwith "Error : invalid input";; main 35;; (* ----------------------- Tests --------------------------- *) open_graph " 1200x800" ;; set_window_title "Graphs" ;; let generate_full_graph k = let res = Array.make k [||] in for i = 0 to k-1 do res.(i) <- Array.make (k-1) 0 done; for x = 0 to k-1 do for y = 0 to k-1 do if x < y then res.(x).(y-1) <- y else if x > y then res.(x).(y) <- y done done; res ;; let generate_random_graph k freq = let res = Array.make k [||] in for i = 0 to k-1 do res.(i) <- Array.make (k-1) (-1) done; for x = 0 to k-1 do for y = 0 to k-1 do if (Random.int 100) < freq then if x < y then res.(x).(y-1) <- y else if x > y then res.(x).(y) <- y done done; res ;; let gr = [|[|3; 5; 7|]; [|0|]; [|1; 7; 8|]; [|2; 6; 9; 10|]; [|0; 1; 3|]; [|6; 7|]; [|0; 1; 2|]; [|8|]; [|0; 7; 6|]; [|10; 11|]; [|3; 5; 7|]; [|0; 9|]|] ;; let fulg = generate_full_graph 16 ;; let rang = generate_random_graph 9 50 ;; (*improved_pretty_printing gr 1200 800 50*) ;; (*improved_pretty_printing fulg 1200 800 25 ;;*) improved_pretty_printing rang 1200 800 45 ;; close_graph () ;; (* compilation command : ocamlfind ocamlc -linkpkg -package unix -linkpkg -package graphics graphs.ml *)