three-deeee-labyrinth-that-.../display.ml

471 lines
14 KiB
OCaml

open Graphics ;;
open Tsdl ;;
Random.self_init () ;;
(*
ocamlfind ocamlc -linkpkg -package unix -linkpkg -package graphics -linkpkg -package tsdl -thread -package threads -linkpkg display.ml
*)
ignore (Sdl.init Sdl.Init.everything) ;;
let p = Sdl.fill_rect ;;
let matrix_mult m1 m2 =
let n = Array.length m1
and p = Array.length m1.(0)
and r = Array.length m2
and s = Array.length m2.(0) in
let mres = Array.make_matrix n s 0 in
if p <> r then
failwith "ERROR : matrixes cannot be multipied, maybe try with reversed inputs ?\n"
else begin
for i = 0 to n-1 do
for j = 0 to s-1 do
for k = 0 to p do
mres.(i).(j) <- mres.(i).(j) + m1.(i).(k) + m2.(k).(j)
done
done
done
end;
mres ;;
let abs x = if x >= 0 then x else -x ;;
let absf x = if x >= 0. then x else -.(x) ;;
(* ------------------------------------------------------------- *)
type pt_3d = {mutable x : float ; mutable y : float ; mutable z : float} ;;
type pt_2d = {mutable x : float ; mutable y : float} ;;
(* ------------------------------------------------------------- *)
let camera_xyz = {x = 0.0 ; y = 0.0 ; z = 0.0} ;;
let camera_angle = ref 0 ;; (* in degrees *)
(* ------------------------------------------------------------- *)
(*
let should_be_drawn (pt : pt_3d) =
let translated = {x = pt.x -. camera_xyz.x; y = pt.y -. camera_xyz.y; z = pt.z +. camera_xyz.z} in
(translated.z *. Float.cos ((float_of_int !camera_angle) *. 3.14159255358 /. 180.) -. translated.x *. Float.sin ((float_of_int !camera_angle) *. 3.14159255358 /. 180.)) > 0. ;;
*)
let should_be_drawn_gr (pt : pt_3d) =
pt.z > 0.1 ;;
let sign x =
if x >= 0. then 1. else -. (1.) ;;
let is_cube_behind_camera (cube : pt_3d array) =
let res = ref true in
for i = 0 to (Array.length cube) -1 do
()
done;
!res ;;
let debug_1 (smth : pt_3d array) =
for i = 0 to Array.length smth -1 do
Printf.printf "(%f, %f, %f)" smth.(i).x smth.(i).y smth.(i).z;
Stdlib.print_endline ";"
done ;
Stdlib.print_endline " " ;;
let to_graphics (flat : pt_2d array) screen_wd screen_ht =
let res = Array.make (Array.length flat) (0, 0) in
for k = 0 to (Array.length flat -1) do
let proj_x = int_of_float ((float_of_int screen_wd) *. (1. +. flat.(k).x) /. 2.)
and proj_y = int_of_float ((float_of_int screen_ht) *. (1. +. flat.(k).y) /. 2.) in
(*Printf.printf "Converting to (%d %d)" proj_x proj_y;
Stdlib.print_endline " ";*)
res.(k) <- (proj_x, proj_y);
done;
res ;;
let draw_pts_2d (flat : pt_2d array) screen_wd screen_ht =
set_color black;
set_line_width 4;
for k = 0 to (Array.length flat -1) do
if absf flat.(k).x <= 1.01 && absf flat.(k).y <= 1.01 then begin
let proj_x = int_of_float ((float_of_int screen_wd) *. (1. +. flat.(k).x) /. 2.)
and proj_y = int_of_float ((float_of_int screen_ht) *. (1. +. flat.(k).y) /. 2.) in
(*Printf.printf "Printing at (%d %d)" proj_x proj_y;
Stdlib.print_endline " ";*)
fill_circle proj_x proj_y 10
end
done ;;
let project (shape : pt_3d array) screen_wd screen_ht fov =
let res = Array.make (Array.length shape) {x = 0. ; y = 0.} in
for k = 0 to (Array.length shape -1) do
res.(k) <- {x = 2. ; y = 2.}
done;
let ar = (float_of_int screen_wd) /. (float_of_int screen_ht) in
for k = 0 to (Array.length shape -1) do
if should_be_drawn_gr shape.(k) then begin
res.(k).x <- shape.(k).x /. (ar *. shape.(k).z *. Float.tan (((float_of_int fov) *. 3.14159265358 /. 180.) /. 2.));
res.(k).y <- shape.(k).y /. (shape.(k).z *. Float.tan (((float_of_int fov) *. 3.14159265358 /. 180.) /. 2.))
end
else begin
res.(k).x <- (absf shape.(k).x) /. (ar *. (0.1 *. (sign shape.(k).x)) *. Float.tan (((float_of_int fov) *. 3.14159265358 /. 180.) /. 2.));
res.(k).y <- (absf shape.(k).y) /. ((0.1 *. (sign shape.(k).y)) *. Float.tan (((float_of_int fov) *. 3.14159265358 /. 180.) /. 2.))
end;
(*Printf.printf "added (%f %f)" res.(k).x res.(k).y;
Stdlib.print_endline " ";*)
done;
res ;;
let adjust_to_camera (shape : pt_3d array) =
let res = Array.make (Array.length shape) {x = 0.0 ; y = 0.0; z = 0.0} in
for i = 0 to Array.length shape -1 do
res.(i) <- {x = shape.(i).x +. camera_xyz.x ; y = shape.(i).y +. camera_xyz.y ; z = shape.(i).z -. camera_xyz.z}
done;
let res2 = Array.make (Array.length shape) {z =0.0 ; x =0.0 ; y =0.0} in
for i = 0 to Array.length shape -1 do
res2.(i) <- {
x = res.(i).x *. Float.cos ((float_of_int !camera_angle) *. 3.14159255358 /. 180.) +. res.(i).z *. Float.sin ((float_of_int !camera_angle) *. 3.14159255358 /. 180.);
y = res.(i).y;
z = res.(i).z *. Float.cos ((float_of_int !camera_angle) *. 3.14159255358 /. 180.) -. res.(i).x *. Float.sin ((float_of_int !camera_angle) *. 3.14159255358 /. 180.)
}
done;
(*debug_1 res2 ;*)
res2 ;;
let sq x = x *. x ;;
let dist_from_camera (p : pt_3d) =
Float.sqrt ((sq (p.x +. camera_xyz.x)) +. (sq (p.y +. camera_xyz.y)) +. (sq (p.z -. camera_xyz.z))) ;;
let farthest_pt (p1 : pt_3d) (p2 : pt_3d) =
max (dist_from_camera p1) (dist_from_camera p2) ;;
let swap arr i j =
let temp = arr.(i) in
arr.(i) <- arr.(j);
arr.(j) <- temp ;;
let draw_cube_p (cube : pt_3d array) screen_wd screen_ht fov r g b =
let proj = project (adjust_to_camera cube) screen_wd screen_ht fov in
let graphed = to_graphics proj screen_wd screen_ht in
set_color (rgb 192 192 192);
let distances = [|
max (farthest_pt cube.(0) cube.(1)) (farthest_pt cube.(2) cube.(3));
max (farthest_pt cube.(4) cube.(5)) (farthest_pt cube.(6) cube.(7));
max (farthest_pt cube.(0) cube.(1)) (farthest_pt cube.(5) cube.(4));
max (farthest_pt cube.(1) cube.(2)) (farthest_pt cube.(6) cube.(5));
max (farthest_pt cube.(2) cube.(3)) (farthest_pt cube.(7) cube.(6));
max (farthest_pt cube.(3) cube.(0)) (farthest_pt cube.(4) cube.(7));
|] in
let order = [|
[|graphed.(0); graphed.(1); graphed.(2); graphed.(3); graphed.(0)|];
[|graphed.(4); graphed.(5); graphed.(6); graphed.(7); graphed.(4)|];
[|graphed.(0); graphed.(1); graphed.(5); graphed.(4); graphed.(0)|];
[|graphed.(1); graphed.(2); graphed.(6); graphed.(5); graphed.(1)|];
[|graphed.(2); graphed.(3); graphed.(7); graphed.(6); graphed.(2)|];
[|graphed.(3); graphed.(0); graphed.(4); graphed.(7); graphed.(3)|];
|] in
(* Note : edge orders must be as following :
7--------6
/| /|
/ | / |
4--------5 |
| | | |
| 3-----|--2
| / | /
|/ |/
0--------1
*)
for i = 0 to 5 do
let cur_max = ref distances.(i) in
let idmax = ref i in
for j = i to 5 do
if distances.(j) > !cur_max then begin
cur_max := distances.(j);
idmax := j
end
done;
swap distances i !idmax;
swap order i !idmax;
done;
(*Printf.printf "| ";
for i = 0 to 5 do
Printf.printf "%f " distances.(i)
done;
Stdlib.print_endline "|";*)
set_line_width 5;
for i = 0 to 5 do
let light = max (0.) (1. -. (distances.(i)) /. 7.5) in
let face_R = int_of_float ((float_of_int r) *. light)
and face_G = int_of_float ((float_of_int g) *. light)
and face_B = int_of_float ((float_of_int b) *. light) in
set_color (rgb face_R face_G face_B);
fill_poly order.(i);
set_color black;
draw_poly_line order.(i);
done ;;
let sum_x (poly : pt_3d array) =
let res = ref 0. in
for i = 0 to (Array.length poly -1) do
res := !res +. poly.(i).x
done;
!res /. (float_of_int (Array.length poly));;
let sum_y (poly : pt_3d array) =
let res = ref 0. in
for i = 0 to (Array.length poly -1) do
res := !res +. poly.(i).y
done;
!res /. (float_of_int (Array.length poly));;
let sum_z (poly : pt_3d array) =
let res = ref 0. in
for i = 0 to (Array.length poly -1) do
res := !res +. poly.(i).z
done;
!res /. (float_of_int (Array.length poly)) ;;
let cube_dist (c : pt_3d array) =
let mid_pt = {
x = sum_x c;
y = sum_y c;
z = sum_z c
}
in dist_from_camera mid_pt ;;
let draw_multiples_cubes (cubes : pt_3d array array) screen_wd screen_ht fov =
let n = Array.length cubes in
let new_arr = Array.make n cubes.(0) in
let distances = Array.make n 0. in
for i = 0 to n-1 do
new_arr.(i) <- cubes.(i);
distances.(i) <- cube_dist cubes.(i)
done ;
for i = 0 to n-1 do
let cur_max = ref distances.(i) in
let idmax = ref i in
for j = i to n-1 do
if distances.(j) > !cur_max then begin
cur_max := distances.(j);
idmax := j
end
done;
swap distances i !idmax;
swap new_arr i !idmax;
done;
for i = 0 to n-1 do
draw_cube_p new_arr.(i) screen_wd screen_ht fov 192 192 192
done ;;
let draw_multiples_cubes_colored (cubes : pt_3d array array) maxlen rs gs bs screen_wd screen_ht fov =
let n = maxlen in
let new_arr = Array.make n cubes.(0)
and distances = Array.make n 0.
and reds = Array.make n 0
and greens = Array.make n 0
and blues = Array.make n 0 in
for i = 0 to n-1 do
new_arr.(i) <- cubes.(i);
distances.(i) <- cube_dist cubes.(i);
reds.(i) <- rs.(i);
greens.(i) <- gs.(i);
blues.(i) <- bs.(i)
done ;
for i = 0 to n-1 do
let cur_max = ref distances.(i) in
let idmax = ref i in
for j = i to n-1 do
if distances.(j) > !cur_max then begin
cur_max := distances.(j);
idmax := j;
end
done;
swap distances i !idmax;
swap new_arr i !idmax;
swap reds i !idmax;
swap greens i !idmax;
swap blues i !idmax;
done;
for i = 0 to n-1 do
(*Printf.printf "drawing cube (%f, %f, %f) with distance %f" new_arr.(i).(0).x new_arr.(i).(0).y new_arr.(i).(0).z distances.(i);
Stdlib.print_endline "...";*)
draw_cube_p new_arr.(i) screen_wd screen_ht fov reds.(i) greens.(i) blues.(i)
done ;;
let create_cube x0' y0' z0' sz' =
let x0 = float_of_int x0'
and y0 = float_of_int y0'
and z0 = float_of_int z0'
and s = float_of_int sz' in
let res = [|
{x = x0 ; y = y0 ; z = z0};
{x = x0 +. s ; y = y0 ; z = z0};
{x = x0 +. s ; y = y0 +. s ; z = z0};
{x = x0 ; y = y0 +. s ; z = z0};
{x = x0 ; y = y0 ; z = z0 +. s};
{x = x0 +. s ; y = y0 ; z = z0 +. s};
{x = x0 +. s ; y = y0 +. s ; z = z0 +. s};
{x = x0 ; y = y0 +. s ; z = z0 +. s}
|]
in res ;;
let cube = [|
{x = -1.; y = 1.; z = 1.};
{x = -2.; y = 1.; z = 1.};
{x = -2.; y = 2.; z = 1.};
{x = -1.; y = 2.; z = 1.};
{x = -1.; y = 1.; z = 2.};
{x = -2.; y = 1.; z = 2.};
{x = -2.; y = 2.; z = 2.};
{x = -1.; y = 2.; z = 2.}
|] ;;
let cube2 = [|
{x = 1.; y = 1.; z = 1.};
{x = 2.; y = 1.; z = 1.};
{x = 2.; y = 2.; z = 1.};
{x = 1.; y = 2.; z = 1.};
{x = 1.; y = 1.; z = 2.};
{x = 2.; y = 1.; z = 2.};
{x = 2.; y = 2.; z = 2.};
{x = 1.; y = 2.; z = 2.}
|] ;;
let cube3 = [|
{x = 1.; y = 1.; z = 2.};
{x = 2.; y = 1.; z = 2.};
{x = 2.; y = 2.; z = 2.};
{x = 1.; y = 2.; z = 2.};
{x = 1.; y = 1.; z = 3.};
{x = 2.; y = 1.; z = 3.};
{x = 2.; y = 2.; z = 3.};
{x = 1.; y = 2.; z = 3.}
|] ;;
let cube4 = [|
{x = 1.; y = 0.; z = 2.};
{x = 2.; y = 0.; z = 2.};
{x = 2.; y = -1.; z = 2.};
{x = 1.; y = -1. ; z = 2.};
{x = 1.; y = 0.; z = 3.};
{x = 2.; y = 0.; z = 3.};
{x = 2.; y = -1.; z = 3.};
{x = 1.; y = -1.; z = 3.}
|] ;;
let fov = 90 ;;
let hehe () =
open_graph " 1500x1000" ;
set_window_title "3D" ;
camera_xyz.z <- 0.8;
for i = 0 to 488 do
open_graph " 1500x1000" ;
draw_multiples_cubes [|cube ; cube4 ; cube2 ; cube3|] 1500 1000 fov ;
camera_xyz.z <- camera_xyz.z -. 0.1;
Stdlib.print_endline "-";
Stdlib.print_endline "-";
Unix.sleepf 0.15
done;
Unix.sleepf 1.0;
close_graph () ;;
let get1char () =
let termio = Unix.tcgetattr Unix.stdin in
let () =
Unix.tcsetattr Unix.stdin Unix.TCSADRAIN
{ termio with Unix.c_icanon = false } in
let res = input_char stdin in
Unix.tcsetattr Unix.stdin Unix.TCSADRAIN termio;
res ;;
(* ---------------------------------------------------- *)
(* ---------------------------------------------------- *)
type tile = Free | Wall | Crate | Exit | Craxit | Camera ;;
let width = 5
and height = 5
and depth = 5 ;;
(* dimensions *)
let laby = Array.make width [|[||]|] ;;
for i = 0 to width -1 do
laby.(i) <- Array.make_matrix height depth Wall
done ;;
let n_walls = ref (width*height*depth) ;;
let convert_laby laby =
let width = Array.length laby
and height = Array.length laby.(0)
and depth = Array.length laby.(0).(0) in
let cubes = Array.make (width*height*depth) [||]
and reds = Array.make (width*height*depth) 0
and greens = Array.make (width*height*depth) 0
and blues = Array.make (width*height*depth) 0 in
let index = ref 0 in
for w = 0 to width-1 do
for h = 0 to height-1 do
for d = 0 to depth-1 do
if laby.(w).(h).(d) <> Free then begin
(*Printf.printf "added (%d, %d, %d)" w h d;
Stdlib.print_endline " ";*)
cubes.(!index) <- create_cube w h d 1;
reds.(!index) <- 212;
greens.(!index) <- 212;
blues.(!index) <- 212;
incr index
end
done
done
done;
(cubes, reds, greens, blues) ;;
let cheesify laby =
let width = Array.length laby
and height = Array.length laby.(0)
and depth = Array.length laby.(0).(0) in
for w = 0 to width-1 do
for h = 0 to height-1 do
for d = 0 to depth-1 do
let rand_w = Random.int width
and rand_h = Random.int height
and rand_d = Random.int depth in
(*Printf.printf "chose (%d, %d, %d)" rand_w rand_h rand_d;
Stdlib.print_endline " ";*)
if laby.(rand_w).(rand_h).(rand_d) <> Free then begin
laby.(rand_w).(rand_h).(rand_d) <- Free;
decr n_walls
end
done
done
done;;
cheesify laby ;;
let (cs, rs, gs, bs) = convert_laby laby ;;
camera_xyz.z <- -. (2.) ;;
camera_xyz.x <- -. (float_of_int width) /. 2. ;;
camera_xyz.y <- -. (float_of_int height) /. 2. ;;
while true do
open_graph " 1500x1000";
draw_multiples_cubes_colored cs !n_walls rs gs bs 1500 1000 fov ;
camera_xyz.z <- camera_xyz.z +. 1.;
Unix.sleepf 1.25
done ;;