three-deeee-labyrinth-that-.../display.ml

1006 lines
36 KiB
OCaml

open Graphics ;;
Random.self_init () ;;
let __width__ = 1500
and __height__ = 1000 ;;
(*
ocamlfind ocamlc -linkpkg -package unix -linkpkg -package graphics -thread -package threads -linkpkg display.ml
*)
(* ------------------------------------------------------------- *)
(* ------------------------------------------------------------- *)
type texture = {mutable width : int ; mutable height : int ; mutable arr_red : int array array ; mutable arr_green : int array array ; mutable arr_blue : int array array} ;;
let parse_texture filename =
let ptr = open_in filename in
let tex = {width = 0 ; height = 0; arr_red = Array.make_matrix 1 1 0; arr_green = Array.make_matrix 1 1 0; arr_blue = Array.make_matrix 1 1 0} in
try
let buffer = ref 0 in
let side = ref 0 in
(* read dimensions *)
while !side <> 2 do
let c = input_char ptr in
let code = Char.code c in
if code >= 48 && code <= 57 then begin
buffer := !buffer * 10;
buffer := !buffer + code - 48
end
else begin
if !side = 0 then
tex.width <- !buffer
else
tex.height <- !buffer;
incr side;
buffer := 0
end
done;
Printf.printf "size is (%d, %d)" tex.width tex.height;
Stdlib.print_endline " ";
tex.arr_red <- Array.make_matrix (tex.width) (tex.height) 0;
tex.arr_green <- Array.make_matrix (tex.width) (tex.height) 0;
tex.arr_blue <- Array.make_matrix (tex.width) (tex.height) 0;
(* read data*)
let cred = ref 0
and cgreen = ref 0
and cblue = ref 0 in
let which_color = ref 0 in
let cur_w = ref 0
and cur_h = ref 0 in
while true do
let c = input_char ptr in
let code = Char.code c in
if code >= 48 && code <= 57 then begin (* integer *)
buffer := !buffer * 10;
buffer := !buffer + code - 48
end
else if c = ',' then begin
if !which_color = 0 then
cred := !buffer
else
cgreen := !buffer;
(* blue is not seen here *)
incr which_color;
buffer := 0
end
else if c = ' ' then begin
cblue := !buffer;
tex.arr_red.(!cur_w).(!cur_h) <- !cred;
tex.arr_green.(!cur_w).(!cur_h) <- !cgreen;
tex.arr_blue.(!cur_w).(!cur_h) <- !cblue;
incr cur_w;
buffer := 0;
which_color := 0
end
else if c = '\n' then begin
cblue := !buffer;
tex.arr_red.(!cur_w).(!cur_h) <- !cred;
tex.arr_green.(!cur_w).(!cur_h) <- !cgreen;
tex.arr_blue.(!cur_w).(!cur_h) <- !cblue;
incr cur_h;
cur_w := 0;
buffer := 0;
which_color := 0
end
done;
failwith "Oh so while true can exit on its own..."
with
| End_of_file ->
close_in ptr ;
Printf.printf "Successfully parsed texture ";
Printf.printf "'%s'" filename;
Stdlib.print_endline " ";
tex
| exn -> close_in ptr ; raise exn ;;
let stone = parse_texture "texture404.txt" ;;
(* ------------------------------------------------------------- *)
(* ------------------------------------------------------------- *)
type 'a dynamic = {mutable tab : 'a array ; mutable len : int ; mutable memlen : int} ;;
type pt_3d = {mutable x : float ; mutable y : float ; mutable z : float} ;;
type pt_2d = {mutable x : float ; mutable y : float} ;;
type coloredCube = {cube : pt_3d array ; red : int ; green : int ; blue : int} ;;
let dyn_create i =
{tab = Array.make 100 i ; len = 0 ; memlen = 100} ;;
let dyn_append arr elt =
let fct x =
if x < arr.len then
arr.tab.(x)
else
arr.tab.(0)
in
if arr.len = arr.memlen then begin
Stdlib.print_endline "resized";
Unix.sleepf 0.5;
let newarr = Array.init (2 * arr.memlen) fct in
arr.memlen <- 2 * arr.memlen;
arr.tab <- newarr
end;
arr.tab.(arr.len) <- elt;
arr.len <- arr.len + 1 ;;
(* ------------------------------------------------------------- *)
(* ------------------------------------------------------------- *)
let abs x = if x >= 0 then x else -x ;;
let absf x = if x >= 0. then x else -.(x) ;;
(* ------------------------------------------------------------- *)
(* ------------------------------------------------------------- *)
let camera_xyz = {x = 0.0 ; y = 0.0 ; z = 0.0} ;;
let camera_angle_x = ref 0 ;;
let camera_angle_y = ref 0 ;;
let camera_angle_z = ref 0 ;;
(* in degrees *)
(* ------------------------------------------------------------- *)
(*
let should_be_drawn (pt : pt_3d) =
let translated = {x = pt.x -. camera_xyz.x; y = pt.y -. camera_xyz.y; z = pt.z +. camera_xyz.z} in
(translated.z *. Float.cos ((float_of_int !camera_angle_y) *. 3.14159255358 /. 180.) -. translated.x *. Float.sin ((float_of_int !camera_angle_y) *. 3.14159255358 /. 180.)) > 0. ;;
*)
let should_be_drawn_gr (pt : pt_3d) =
pt.z > 0.4 ;;
let sign x =
if x >= 0. then 1. else -. (1.) ;;
let is_cube_behind_camera (cube : pt_3d array) =
let res = ref true in
for i = 0 to (Array.length cube) -1 do
()
done;
!res ;;
let adapt_to_dims x y =
(max 0 (min __width__ x), max 0 (min __height__ y)) ;;
let debug_1 (smth : pt_3d array) =
for i = 0 to Array.length smth -1 do
Printf.printf "(%f, %f, %f)" smth.(i).x smth.(i).y smth.(i).z;
Stdlib.print_endline ";"
done ;
Stdlib.print_endline " " ;;
let to_graphics (flat : pt_2d array) screen_wd screen_ht =
let res = Array.make (Array.length flat) (0, 0) in
for k = 0 to (Array.length flat -1) do
let proj_x = int_of_float ((float_of_int screen_wd) *. (1. +. flat.(k).x) /. 2.)
and proj_y = int_of_float ((float_of_int screen_ht) *. (1. +. flat.(k).y) /. 2.) in
(*Printf.printf "Converting to (%d %d)" proj_x proj_y;
Stdlib.print_endline " ";*)
(*res.(k) <- adapt_to_dims proj_x proj_y;*)
res.(k) <- (proj_x, proj_y);
done;
res ;;
let draw_pts_2d (flat : pt_2d array) screen_wd screen_ht =
set_color black;
set_line_width 4;
for k = 0 to (Array.length flat -1) do
if absf flat.(k).x <= 1.01 && absf flat.(k).y <= 1.01 then begin
let proj_x = int_of_float ((float_of_int screen_wd) *. (1. +. flat.(k).x) /. 2.)
and proj_y = int_of_float ((float_of_int screen_ht) *. (1. +. flat.(k).y) /. 2.) in
(*Printf.printf "Printing at (%d %d)" proj_x proj_y;
Stdlib.print_endline " ";*)
fill_circle proj_x proj_y 10
end
done ;;
let project (shape : pt_3d array) screen_wd screen_ht fov =
let res = Array.make (Array.length shape) {x = 0. ; y = 0.} in
for k = 0 to (Array.length shape -1) do
res.(k) <- {x = 2. ; y = 2.}
done;
let ar = (float_of_int screen_wd) /. (float_of_int screen_ht) in
for k = 0 to (Array.length shape -1) do
if should_be_drawn_gr shape.(k) then begin
res.(k).x <- shape.(k).x /. (ar *. shape.(k).z *. Float.tan (((float_of_int fov) *. 3.14159265358 /. 180.) /. 2.));
res.(k).y <- shape.(k).y /. (shape.(k).z *. Float.tan (((float_of_int fov) *. 3.14159265358 /. 180.) /. 2.))
end
else begin
res.(k).x <- (absf shape.(k).x) /. (ar *. (0.4 *. (sign shape.(k).x)) *. Float.tan (((float_of_int fov) *. 3.14159265358 /. 180.) /. 2.));
res.(k).y <- (absf shape.(k).y) /. ((0.4 *. (sign shape.(k).y)) *. Float.tan (((float_of_int fov) *. 3.14159265358 /. 180.) /. 2.))
end;
(*Printf.printf "added (%f %f)" res.(k).x res.(k).y;
Stdlib.print_endline " ";*)
done;
res ;;
let adjust_to_camera (shape : pt_3d array) =
let res = Array.make (Array.length shape) {x = 0.0 ; y = 0.0; z = 0.0} in
for i = 0 to Array.length shape -1 do
res.(i) <- {x = shape.(i).x +. camera_xyz.x ; y = shape.(i).y +. camera_xyz.y ; z = shape.(i).z -. camera_xyz.z}
done;
let res2 = Array.make (Array.length shape) {z =0.0 ; x =0.0 ; y =0.0} in
for i = 0 to Array.length shape -1 do
res2.(i) <- {
x = res.(i).x *. Float.cos ((float_of_int !camera_angle_y) *. 3.14159255358 /. 180.) +. res.(i).z *. Float.sin ((float_of_int !camera_angle_y) *. 3.14159255358 /. 180.);
y = res.(i).y;
z = res.(i).z *. Float.cos ((float_of_int !camera_angle_y) *. 3.14159255358 /. 180.) -. res.(i).x *. Float.sin ((float_of_int !camera_angle_y) *. 3.14159255358 /. 180.)
}
done;
(*debug_1 res2 ;*)
res2 ;;
let sq x = x *. x ;;
let dist_from_camera (p : pt_3d) =
Float.sqrt ((sq (p.x +. camera_xyz.x)) +. (sq (p.y +. camera_xyz.y)) +. (sq (p.z -. camera_xyz.z))) ;;
let farthest_pt (p1 : pt_3d) (p2 : pt_3d) =
max (dist_from_camera p1) (dist_from_camera p2) ;;
let swap arr i j =
let temp = arr.(i) in
arr.(i) <- arr.(j);
arr.(j) <- temp ;;
let are_faces_behind (cube : pt_3d array) =
let res = Array.make 6 false in
res.(0) <- (should_be_drawn_gr cube.(0)) || (should_be_drawn_gr cube.(1)) || (should_be_drawn_gr cube.(2)) || (should_be_drawn_gr cube.(3));
res.(1) <- (should_be_drawn_gr cube.(4)) || (should_be_drawn_gr cube.(5)) || (should_be_drawn_gr cube.(6)) || (should_be_drawn_gr cube.(7));
res.(2) <- (should_be_drawn_gr cube.(0)) || (should_be_drawn_gr cube.(1)) || (should_be_drawn_gr cube.(5)) || (should_be_drawn_gr cube.(4));
res.(3) <- (should_be_drawn_gr cube.(1)) || (should_be_drawn_gr cube.(2)) || (should_be_drawn_gr cube.(6)) || (should_be_drawn_gr cube.(5));
res.(4) <- (should_be_drawn_gr cube.(2)) || (should_be_drawn_gr cube.(3)) || (should_be_drawn_gr cube.(7)) || (should_be_drawn_gr cube.(6));
res.(5) <- (should_be_drawn_gr cube.(3)) || (should_be_drawn_gr cube.(0)) || (should_be_drawn_gr cube.(4)) || (should_be_drawn_gr cube.(7));
(res, res.(0) || res.(1) || res.(2) || res.(3) || res.(4) || res.(5)) ;;
let convex_seg x1 x2 theta maxtheta =
let ratio = (float_of_int theta) /. (float_of_int maxtheta) in
int_of_float ((1. -. ratio) *. (float_of_int x1) +. ratio *. (float_of_int x2)) ;;
let convex_pt (p1 : int * int) (p2 : int * int) theta maxtheta =
let ratio = (float_of_int theta) /. (float_of_int maxtheta) in
let mid_x = int_of_float ((1. -. ratio) *. (float_of_int (fst p1)) +. ratio *. (float_of_int (fst p2)))
and mid_y = int_of_float ((1. -. ratio) *. (float_of_int (snd p1)) +. ratio *. (float_of_int (snd p2))) in
(mid_x, mid_y) ;;
let draw_texture (rect : (int * int) array) (text : texture) light =
(*set_color white;
fill_poly rect ;;*)
for i = 0 to text.width -1 do
for j = 0 to text.height -1 do
let face_R = int_of_float ((float_of_int text.arr_red.(i).(j)) *. light)
and face_G = int_of_float ((float_of_int text.arr_green.(i).(j)) *. light)
and face_B = int_of_float ((float_of_int text.arr_blue.(i).(j)) *. light) in
set_color (rgb face_R face_G face_B);
let pt_a = convex_pt rect.(0) rect.(1) i text.width
and pt_b = convex_pt rect.(0) rect.(1) (i+1) text.width
and pt_e = convex_pt rect.(3) rect.(2) (i+1) text.width
and pt_f = convex_pt rect.(3) rect.(2) i text.width in
let bot_left = convex_pt pt_a pt_f j text.height
and bot_right = convex_pt pt_b pt_e j text.height
and top_left = convex_pt pt_a pt_f (j+1) text.height
and top_right = convex_pt pt_b pt_e (j+1) text.height in
fill_poly [|bot_left; bot_right; top_right; top_left|]
done
done ;;
let draw_cube_p (cube : pt_3d array) screen_wd screen_ht fov r g b =
let adjusted = adjust_to_camera cube in
let (draw_faces, draw_cube) = are_faces_behind adjusted in
if draw_cube then begin
let proj = project adjusted screen_wd screen_ht fov in
let graphed = to_graphics proj screen_wd screen_ht in
set_color (rgb 192 192 192);
let distances = [|
max (farthest_pt cube.(0) cube.(1)) (farthest_pt cube.(2) cube.(3));
max (farthest_pt cube.(4) cube.(5)) (farthest_pt cube.(6) cube.(7));
max (farthest_pt cube.(0) cube.(1)) (farthest_pt cube.(5) cube.(4));
max (farthest_pt cube.(1) cube.(2)) (farthest_pt cube.(6) cube.(5));
max (farthest_pt cube.(2) cube.(3)) (farthest_pt cube.(7) cube.(6));
max (farthest_pt cube.(3) cube.(0)) (farthest_pt cube.(4) cube.(7));
|] in
let order = [|
[|graphed.(0); graphed.(1); graphed.(2); graphed.(3)|];
[|graphed.(4); graphed.(5); graphed.(6); graphed.(7)|];
[|graphed.(0); graphed.(1); graphed.(5); graphed.(4)|];
[|graphed.(1); graphed.(2); graphed.(6); graphed.(5)|];
[|graphed.(2); graphed.(3); graphed.(7); graphed.(6)|];
[|graphed.(3); graphed.(0); graphed.(4); graphed.(7)|];
|] in
(* Note : edge orders must be as following :
7--------6
/| /|
/ | / |
4--------5 |
| | | |
| 3-----|--2
| / | /
|/ |/
0--------1
*)
for i = 0 to 5 do
let cur_max = ref distances.(i) in
let idmax = ref i in
for j = i to 5 do
if distances.(j) > !cur_max then begin
cur_max := distances.(j);
idmax := j
end
done;
swap distances i !idmax;
swap order i !idmax;
swap draw_faces i !idmax;
done;
set_line_width 5;
for i = 0 to 5 do
if draw_faces.(i) then begin
let light = max (0.) (1. -. (distances.(i)) /. 12.5) in
let face_R = int_of_float ((float_of_int r) *. light)
and face_G = int_of_float ((float_of_int g) *. light)
and face_B = int_of_float ((float_of_int b) *. light) in
set_color (rgb face_R face_G face_B);
fill_poly order.(i);
(*draw_texture order.(i) stone light ;*)
set_color black;
draw_poly_line order.(i);
end
done
end ;;
let sum_x (poly : pt_3d array) =
let res = ref 0. in
for i = 0 to (Array.length poly -1) do
res := !res +. poly.(i).x
done;
!res /. (float_of_int (Array.length poly));;
let sum_y (poly : pt_3d array) =
let res = ref 0. in
for i = 0 to (Array.length poly -1) do
res := !res +. poly.(i).y
done;
!res /. (float_of_int (Array.length poly));;
let sum_z (poly : pt_3d array) =
let res = ref 0. in
for i = 0 to (Array.length poly -1) do
res := !res +. poly.(i).z
done;
!res /. (float_of_int (Array.length poly)) ;;
let cube_dist (c : pt_3d array) =
let mid_pt = {
x = sum_x c;
y = sum_y c;
z = sum_z c
}
in dist_from_camera mid_pt ;;
let draw_multiples_cubes_colored (cubes : pt_3d array dynamic) rs gs bs screen_wd screen_ht fov render_dist =
let n = cubes.len in
let distances = Array.make n 0. in
for i = 0 to n-1 do
distances.(i) <- cube_dist cubes.tab.(i);
done ;
for i = 0 to n-1 do
let cur_max = ref distances.(i) in
let idmax = ref i in
for j = i to n-1 do
if distances.(j) > !cur_max then begin
cur_max := distances.(j);
idmax := j;
end
done;
swap distances i !idmax;
swap cubes.tab i !idmax;
done;
for i = 0 to n-1 do
if distances.(i) <= (float_of_int render_dist) then begin
draw_cube_p cubes.tab.(i) screen_wd screen_ht fov rs.tab.(i) gs.tab.(i) bs.tab.(i)
end
done ;;
let draw_multiples_cubes_colored_hash (dyna : coloredCube dynamic) screen_wd screen_ht fov =
let n = dyna.len in
(*Printf.printf ">> %d <<" n;
Stdlib.print_endline " ";*)
let distances = Array.make n 0. in
for i = 0 to n-1 do
distances.(i) <- cube_dist dyna.tab.(i).cube;
done ;
for i = 0 to n-1 do
let cur_max = ref distances.(i) in
let idmax = ref i in
for j = i to n-1 do
if distances.(j) > !cur_max then begin
cur_max := distances.(j);
idmax := j;
end
done;
swap distances i !idmax;
swap dyna.tab i !idmax;
done;
for i = 0 to n-1 do
(*Printf.printf "drawing (%f, %f, %f)" (dyna.tab.(i).cube.(0).x) (dyna.tab.(i).cube.(0).y) (dyna.tab.(i).cube.(0).z);
Stdlib.print_endline " ";*)
draw_cube_p (dyna.tab.(i).cube) screen_wd screen_ht fov (dyna.tab.(i).red) (dyna.tab.(i).green) (dyna.tab.(i).blue)
done ;;
let create_cube x0' y0' z0' sz' =
let x0 = float_of_int x0'
and y0 = float_of_int y0'
and z0 = float_of_int z0'
and s = float_of_int sz' in
let res = [|
{x = x0 ; y = y0 ; z = z0};
{x = x0 +. s ; y = y0 ; z = z0};
{x = x0 +. s ; y = y0 +. s ; z = z0};
{x = x0 ; y = y0 +. s ; z = z0};
{x = x0 ; y = y0 ; z = z0 +. s};
{x = x0 +. s ; y = y0 ; z = z0 +. s};
{x = x0 +. s ; y = y0 +. s ; z = z0 +. s};
{x = x0 ; y = y0 +. s ; z = z0 +. s}
|]
in res ;;
let fov = 90 ;;
(*
7--------6
/| /|
/ | / |
4--------5 |
| | | |
| 3-----|--2
| / | /
|/ |/
0--------1
[|graphed.(0); graphed.(1); graphed.(2); graphed.(3); graphed.(0)|];
[|graphed.(4); graphed.(5); graphed.(6); graphed.(7); graphed.(4)|];
[|graphed.(0); graphed.(1); graphed.(5); graphed.(4); graphed.(0)|];
[|graphed.(1); graphed.(2); graphed.(6); graphed.(5); graphed.(1)|];
[|graphed.(2); graphed.(3); graphed.(7); graphed.(6); graphed.(2)|];
[|graphed.(3); graphed.(0); graphed.(4); graphed.(7); graphed.(3)|];
*)
let print_cube (cube : pt_3d array) =
for j = 0 to 7 do
Printf.printf " {%f, %f, %f}\n" cube.(j).x cube.(j).y cube.(j).z
done;
Stdlib.print_endline " " ;;
let get1char () =
let termio = Unix.tcgetattr Unix.stdin in
let () =
Unix.tcsetattr Unix.stdin Unix.TCSADRAIN
{ termio with Unix.c_icanon = false } in
let res = input_char stdin in
Unix.tcsetattr Unix.stdin Unix.TCSADRAIN termio;
res ;;
(* -------------------------------------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------------------------------------- *)
type tile = Free | Wall | Crate | Exit | Craxit | Camera ;;
let width = 15
and height = 15
and depth = 15 ;;
(* dimensions *)
let render_distance = 7 ;;
let chunk_dist = 2 ;;
let chunk_size = 4 ;;
let chunk_size_f = float_of_int chunk_size ;;
(* -------------------------------------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------------------------------------- *)
(* -------------------------------------------------------------------------------------------------------- *)
let laby = Array.make width [|[||]|] ;;
for i = 0 to width -1 do
laby.(i) <- Array.make_matrix height depth Wall
done ;;
let n_walls = ref (width*height*depth) ;;
let ctc_one x =
if x >= 0 then
x / chunk_size
else
x / chunk_size -1 ;;
let ctcf_one x =
if x >= 0. then
int_of_float (x /. chunk_size_f)
else
int_of_float (x /. chunk_size_f) -1 ;;
let coords_to_chunk x y z =
(ctc_one x, ctc_one y, ctc_one z) ;;
let coords_to_chunk_f x y z =
(ctcf_one x, ctcf_one y, ctcf_one z) ;;
let is_collision_cube (cam_coords : pt_3d) (cube : pt_3d array) =
cube.(0).x <= (-. cam_coords.x) &&
cube.(0).y <= (-. cam_coords.y) &&
cube.(0).z <= cam_coords.z &&
cube.(6).x >= (-. cam_coords.x) &&
cube.(6).y >= (-. cam_coords.y) &&
cube.(6).z >= cam_coords.z ;;
let is_collision (cam_coords : pt_3d) (cubes : pt_3d array array) =
let res = ref false in
let n = !n_walls in
let distances = Array.make n 0. in
for i = 0 to n-1 do
distances.(i) <- cube_dist cubes.(i);
done ;
for i = 0 to n-1 do
if not !res && distances.(i) < 2. then
res := is_collision_cube cam_coords cubes.(i)
done;
!res ;;
let is_collision_hash (cam_coords : pt_3d) (cubes : coloredCube dynamic) =
let res = ref false in
let n = cubes.len in
let distances = Array.make n 0. in
for i = 0 to n-1 do
distances.(i) <- cube_dist cubes.tab.(i).cube;
done ;
for i = 0 to n-1 do
if not !res && distances.(i) < 2. then
res := is_collision_cube cam_coords cubes.tab.(i).cube
done;
!res ;;
let is_collision_hash_2 (cam_coords : pt_3d) (rcubes : (coloredCube dynamic) option) = match rcubes with
| None -> false
| Some cubes -> begin
let res = ref false in
let n = cubes.len in
let distances = Array.make n 0. in
for i = 0 to n-1 do
distances.(i) <- cube_dist cubes.tab.(i).cube;
done ;
for i = 0 to n-1 do
if not !res && distances.(i) < 2. then
res := is_collision_cube cam_coords cubes.tab.(i).cube
done;
!res
end ;;
let convert_laby laby =
let width = Array.length laby
and height = Array.length laby.(0)
and depth = Array.length laby.(0).(0) in
let cubes = dyn_create (create_cube 0 0 0 0)
and reds = dyn_create 0
and greens = dyn_create 0
and blues = dyn_create 0 in
for w = 0 to width-1 do
for h = 0 to height-1 do
for d = 0 to depth-1 do
if laby.(w).(h).(d) <> Free then begin
(*Printf.printf "added (%d, %d, %d)" w h d;
Stdlib.print_endline " ";*)
dyn_append cubes (create_cube w h d 1);
dyn_append reds 212;
dyn_append greens 212;
dyn_append blues 212;
end
done
done
done;
(cubes, reds, greens, blues) ;;
let chunkify_2 laby sz =
let width = Array.length laby
and height = Array.length laby.(0)
and depth = Array.length laby.(0).(0) in
let cubes = Hashtbl.create 300 in
let add_to_table w h d r g b=
(*Printf.printf "(%d, %d, %d) (%d, %d, %d)\n" w h d cw ch cd;*)
let (cw, ch, cd) = coords_to_chunk (w*sz) (h*sz) (d*sz) in
match Hashtbl.find_opt cubes (cw, ch, cd) with
| None -> begin
Printf.printf "created cube (%d, %d, %d) (%d)\n" (w*sz) (h*sz) (d*sz) sz;
Printf.printf "in chunk (%d, %d, %d)\n" cw ch cd;
Stdlib.print_endline " ";
let dyna = dyn_create {cube = create_cube (w*sz) (h*sz) (d*sz) sz; red = r; green = g; blue = b} in
dyn_append dyna {cube = create_cube (w*sz) (h*sz) (d*sz) sz; red = r; green = g; blue = b};
Hashtbl.add cubes (cw, ch, cd) dyna
end
| Some dyna -> begin
Printf.printf "created cube (%d, %d, %d) (%d)\n" (w*sz) (h*sz) (d*sz) sz;
Printf.printf "in chunk (%d, %d, %d)\n" cw ch cd;
Stdlib.print_endline " ";
Hashtbl.remove cubes (cw, ch, cd);
dyn_append dyna {cube = create_cube (w*sz) (h*sz) (d*sz) sz; red = r; green = g; blue = b};
Hashtbl.add cubes (cw, ch, cd) dyna
end
in
for w = 0 to width-1 do
for h = 0 to height-1 do
for d = 0 to depth-1 do
if laby.(w).(h).(d) <> Free then begin
add_to_table w h d 220 220 220
end
done
done
done;
(*
let s = ref 0 in
for i = 0 to 2 do
for j = 0 to 2 do
for k = 0 to 2 do
let nc = ((Hashtbl.find cubes (i, j, k)).len) in
Printf.printf "len for (%d, %d, %d) : %d" i j k nc;
s := !s + nc;
Stdlib.print_endline " "
done
done
done;
Printf.printf "s = %d" !s;
Stdlib.print_endline " ";
*)
(*Unix.sleepf 100.0;*)
cubes ;;
let chunkify laby sz =
let width = Array.length laby
and height = Array.length laby.(0)
and depth = Array.length laby.(0).(0) in
let cubes = Hashtbl.create 300 in
let add_to_table w h d cw ch cd r g b=
(*Printf.printf "(%d, %d, %d) (%d, %d, %d)\n" w h d cw ch cd;*)
match Hashtbl.find_opt cubes (cw, ch, cd) with
| None -> begin
let dyna = dyn_create {cube = create_cube (w*sz) (h*sz) (d*sz) sz; red = r; green = g; blue = b} in
Hashtbl.add cubes (cw, ch, cd) dyna
end
| Some dyna -> begin
Hashtbl.remove cubes (cw, ch, cd);
dyn_append dyna {cube = create_cube (w*sz) (h*sz) (d*sz) sz; red = r; green = g; blue = b};
Hashtbl.add cubes (cw, ch, cd) dyna
end
in
for w = 0 to width-1 do
for h = 0 to height-1 do
for d = 0 to depth-1 do
if laby.(w).(h).(d) <> Free then begin
for i = -chunk_dist to chunk_dist do
for j = -chunk_dist to chunk_dist do
for k = -chunk_dist to chunk_dist do
add_to_table w h d ((w*sz)/chunk_size + i) ((h*sz)/chunk_size + j) ((d*sz)/chunk_size + k) 220 220 220
done
done
done
end(*;
Stdlib.print_endline " ";*)
done
done
done;
for w = -10 to 10 do
for d = -10 to 10 do
for i = -chunk_dist to chunk_dist do
for j = -chunk_dist to chunk_dist do
for k = -chunk_dist to chunk_dist do
add_to_table w (-1) d ((w*sz)/chunk_size + i) (((-1)*sz)/chunk_size + j) ((d*sz)/chunk_size + k) 256 256 32
done
done
done
done
done ;
cubes ;;
let cheesify (laby : tile array array array) =
let width = Array.length laby
and height = Array.length laby.(0)
and depth = Array.length laby.(0).(0) in
for w = 0 to width-1 do
for h = 0 to height-1 do
for d = 0 to depth-1 do
let rand_w = Random.int width
and rand_h = 1 + Random.int (height-1)
and rand_d = Random.int depth in
(*Printf.printf "chose (%d, %d, %d)" rand_w rand_h rand_d;
Stdlib.print_endline " ";*)
if laby.(rand_w).(rand_h).(rand_d) <> Free then begin
laby.(rand_w).(rand_h).(rand_d) <- Free;
decr n_walls
end
done
done
done;;
(* z q s d for movement, p to go up, m to go down, a to rotate left, e to rotate right *)
let rec move_cam (cubes : pt_3d array array) b c =(* Printf.printf "[%b]" b; Stdlib.print_endline " " ; *)match c with
| 'z' ->
camera_xyz.z <- camera_xyz.z +. Float.cos ((float_of_int !camera_angle_y) *. 3.1415926535 /. 180.);
camera_xyz.x <- camera_xyz.x +. Float.sin ((float_of_int !camera_angle_y) *. 3.1415926535 /. 180.);
if b && (is_collision camera_xyz cubes) then move_cam cubes false 's'
| 'q' ->
camera_xyz.z <- camera_xyz.z +. Float.cos (((float_of_int !camera_angle_y) +. 90.) *. 3.1415926535 /. 180.);
camera_xyz.x <- camera_xyz.x +. Float.sin (((float_of_int !camera_angle_y) +. 90.) *. 3.1415926535 /. 180.);
if b && (is_collision camera_xyz cubes) then move_cam cubes false 'q'
| 's' ->
camera_xyz.z <- camera_xyz.z -. Float.cos ((float_of_int !camera_angle_y) *. 3.1415926535 /. 180.);
camera_xyz.x <- camera_xyz.x -. Float.sin ((float_of_int !camera_angle_y) *. 3.1415926535 /. 180.);
if b && (is_collision camera_xyz cubes) then move_cam cubes false 'z'
| 'd' ->
camera_xyz.z <- camera_xyz.z +. Float.cos (((float_of_int !camera_angle_y) -. 90.) *. 3.1415926535 /. 180.);
camera_xyz.x <- camera_xyz.x +. Float.sin (((float_of_int !camera_angle_y) -. 90.) *. 3.1415926535 /. 180.);
if b && (is_collision camera_xyz cubes) then move_cam cubes false 'q'
| 'p' ->
camera_xyz.y <- camera_xyz.y -. 1.;
if b && (is_collision camera_xyz cubes) then move_cam cubes false 'm'
| 'm' ->
camera_xyz.y <- camera_xyz.y +. 1.;
if b && (is_collision camera_xyz cubes) then move_cam cubes false 'p'
| 'a' -> camera_angle_y := !camera_angle_y + 15
| 'e' -> camera_angle_y := !camera_angle_y - 15
| _ -> () ;;
let play laby =
cheesify laby;
let (cs, rs, gs, bs) = convert_laby laby in
camera_xyz.z <- -. (1.5) ;
camera_xyz.x <- -. (float_of_int width) /. 2. ;
camera_xyz.y <- -. (float_of_int height) /. 2. ;
(*print_cubes cs ;*)
while true do
auto_synchronize false;
open_graph " 1500x1000";
set_color black;
fill_poly [|(0, 0); (1500, 0); (1500, 1000); (0, 1000); (0, 0)|];
set_color white;
draw_multiples_cubes_colored cs rs gs bs __width__ __height__ fov render_distance ;
auto_synchronize true;
Printf.printf "current pos : (%f, %f, %f)" (-. camera_xyz.x) (-. camera_xyz.y) camera_xyz.z;
Stdlib.print_endline " ";
let usr_input = get1char () in
move_cam cs.tab true usr_input
done ;;
let rec move_cam_hash (cubes : coloredCube dynamic) b c =(* Printf.printf "[%b]" b; Stdlib.print_endline " " ; *)match c with
| 'z' ->
camera_xyz.z <- camera_xyz.z +. Float.cos ((float_of_int !camera_angle_y) *. 3.1415926535 /. 180.);
camera_xyz.x <- camera_xyz.x +. Float.sin ((float_of_int !camera_angle_y) *. 3.1415926535 /. 180.);
if b && (is_collision_hash camera_xyz cubes) then move_cam_hash cubes false 's'
| 'q' ->
camera_xyz.z <- camera_xyz.z +. Float.cos (((float_of_int !camera_angle_y) +. 90.) *. 3.1415926535 /. 180.);
camera_xyz.x <- camera_xyz.x +. Float.sin (((float_of_int !camera_angle_y) +. 90.) *. 3.1415926535 /. 180.);
if b && (is_collision_hash camera_xyz cubes) then move_cam_hash cubes false 'q'
| 's' ->
camera_xyz.z <- camera_xyz.z -. Float.cos ((float_of_int !camera_angle_y) *. 3.1415926535 /. 180.);
camera_xyz.x <- camera_xyz.x -. Float.sin ((float_of_int !camera_angle_y) *. 3.1415926535 /. 180.);
if b && (is_collision_hash camera_xyz cubes) then move_cam_hash cubes false 'z'
| 'd' ->
camera_xyz.z <- camera_xyz.z +. Float.cos (((float_of_int !camera_angle_y) -. 90.) *. 3.1415926535 /. 180.);
camera_xyz.x <- camera_xyz.x +. Float.sin (((float_of_int !camera_angle_y) -. 90.) *. 3.1415926535 /. 180.);
if b && (is_collision_hash camera_xyz cubes) then move_cam_hash cubes false 'q'
| 'p' ->
camera_xyz.y <- camera_xyz.y -. 1.;
if b && (is_collision_hash camera_xyz cubes) then move_cam_hash cubes false 'm'
| 'm' ->
camera_xyz.y <- camera_xyz.y +. 1.;
if b && (is_collision_hash camera_xyz cubes) then move_cam_hash cubes false 'p'
| 'a' -> camera_angle_y := !camera_angle_y + 30
| 'e' -> camera_angle_y := !camera_angle_y - 30
| _ -> () ;;
let rec move_cam_hash_2 hash cx cy cz b c =(* Printf.printf "[%b]" b; Stdlib.print_endline " " ; *)match c with
| 'z' ->
camera_xyz.z <- camera_xyz.z +. Float.cos ((float_of_int !camera_angle_y) *. 3.1415926535 /. 180.);
camera_xyz.x <- camera_xyz.x +. Float.sin ((float_of_int !camera_angle_y) *. 3.1415926535 /. 180.);
if b && (
(is_collision_hash_2 camera_xyz (Hashtbl.find_opt hash (cx,cy,cz))) ||
(is_collision_hash_2 camera_xyz (Hashtbl.find_opt hash (cx+1,cy,cz))) ||
(is_collision_hash_2 camera_xyz (Hashtbl.find_opt hash (cx-1,cy,cz))) ||
(is_collision_hash_2 camera_xyz (Hashtbl.find_opt hash (cx,cy+1,cz))) ||
(is_collision_hash_2 camera_xyz (Hashtbl.find_opt hash (cx,cy-1,cz))) ||
(is_collision_hash_2 camera_xyz (Hashtbl.find_opt hash (cx,cy,cz+1))) ||
(is_collision_hash_2 camera_xyz (Hashtbl.find_opt hash (cx,cy,cz-1)))
) then move_cam_hash_2 hash cx cy cz false 's'
| 'q' ->
camera_xyz.z <- camera_xyz.z +. Float.cos (((float_of_int !camera_angle_y) +. 90.) *. 3.1415926535 /. 180.);
camera_xyz.x <- camera_xyz.x +. Float.sin (((float_of_int !camera_angle_y) +. 90.) *. 3.1415926535 /. 180.);
if b && (
(is_collision_hash_2 camera_xyz (Hashtbl.find_opt hash (cx,cy,cz))) ||
(is_collision_hash_2 camera_xyz (Hashtbl.find_opt hash (cx+1,cy,cz))) ||
(is_collision_hash_2 camera_xyz (Hashtbl.find_opt hash (cx-1,cy,cz))) ||
(is_collision_hash_2 camera_xyz (Hashtbl.find_opt hash (cx,cy+1,cz))) ||
(is_collision_hash_2 camera_xyz (Hashtbl.find_opt hash (cx,cy-1,cz))) ||
(is_collision_hash_2 camera_xyz (Hashtbl.find_opt hash (cx,cy,cz+1))) ||
(is_collision_hash_2 camera_xyz (Hashtbl.find_opt hash (cx,cy,cz-1)))
) then move_cam_hash_2 hash cx cy cz false 'q'
| 's' ->
camera_xyz.z <- camera_xyz.z -. Float.cos ((float_of_int !camera_angle_y) *. 3.1415926535 /. 180.);
camera_xyz.x <- camera_xyz.x -. Float.sin ((float_of_int !camera_angle_y) *. 3.1415926535 /. 180.);
if b && (
(is_collision_hash_2 camera_xyz (Hashtbl.find_opt hash (cx,cy,cz))) ||
(is_collision_hash_2 camera_xyz (Hashtbl.find_opt hash (cx+1,cy,cz))) ||
(is_collision_hash_2 camera_xyz (Hashtbl.find_opt hash (cx-1,cy,cz))) ||
(is_collision_hash_2 camera_xyz (Hashtbl.find_opt hash (cx,cy+1,cz))) ||
(is_collision_hash_2 camera_xyz (Hashtbl.find_opt hash (cx,cy-1,cz))) ||
(is_collision_hash_2 camera_xyz (Hashtbl.find_opt hash (cx,cy,cz+1))) ||
(is_collision_hash_2 camera_xyz (Hashtbl.find_opt hash (cx,cy,cz-1)))
) then move_cam_hash_2 hash cx cy cz false 'z'
| 'd' ->
camera_xyz.z <- camera_xyz.z +. Float.cos (((float_of_int !camera_angle_y) -. 90.) *. 3.1415926535 /. 180.);
camera_xyz.x <- camera_xyz.x +. Float.sin (((float_of_int !camera_angle_y) -. 90.) *. 3.1415926535 /. 180.);
if b && (
(is_collision_hash_2 camera_xyz (Hashtbl.find_opt hash (cx,cy,cz))) ||
(is_collision_hash_2 camera_xyz (Hashtbl.find_opt hash (cx+1,cy,cz))) ||
(is_collision_hash_2 camera_xyz (Hashtbl.find_opt hash (cx-1,cy,cz))) ||
(is_collision_hash_2 camera_xyz (Hashtbl.find_opt hash (cx,cy+1,cz))) ||
(is_collision_hash_2 camera_xyz (Hashtbl.find_opt hash (cx,cy-1,cz))) ||
(is_collision_hash_2 camera_xyz (Hashtbl.find_opt hash (cx,cy,cz+1))) ||
(is_collision_hash_2 camera_xyz (Hashtbl.find_opt hash (cx,cy,cz-1)))
) then move_cam_hash_2 hash cx cy cz false 'q'
| 'p' ->
camera_xyz.y <- camera_xyz.y -. 1.;
if b && (
(is_collision_hash_2 camera_xyz (Hashtbl.find_opt hash (cx,cy,cz))) ||
(is_collision_hash_2 camera_xyz (Hashtbl.find_opt hash (cx+1,cy,cz))) ||
(is_collision_hash_2 camera_xyz (Hashtbl.find_opt hash (cx-1,cy,cz))) ||
(is_collision_hash_2 camera_xyz (Hashtbl.find_opt hash (cx,cy+1,cz))) ||
(is_collision_hash_2 camera_xyz (Hashtbl.find_opt hash (cx,cy-1,cz))) ||
(is_collision_hash_2 camera_xyz (Hashtbl.find_opt hash (cx,cy,cz+1))) ||
(is_collision_hash_2 camera_xyz (Hashtbl.find_opt hash (cx,cy,cz-1)))
) then move_cam_hash_2 hash cx cy cz false 'm'
| 'm' ->
camera_xyz.y <- camera_xyz.y +. 1.;
if b && (
(is_collision_hash_2 camera_xyz (Hashtbl.find_opt hash (cx,cy,cz))) ||
(is_collision_hash_2 camera_xyz (Hashtbl.find_opt hash (cx+1,cy,cz))) ||
(is_collision_hash_2 camera_xyz (Hashtbl.find_opt hash (cx-1,cy,cz))) ||
(is_collision_hash_2 camera_xyz (Hashtbl.find_opt hash (cx,cy+1,cz))) ||
(is_collision_hash_2 camera_xyz (Hashtbl.find_opt hash (cx,cy-1,cz))) ||
(is_collision_hash_2 camera_xyz (Hashtbl.find_opt hash (cx,cy,cz+1))) ||
(is_collision_hash_2 camera_xyz (Hashtbl.find_opt hash (cx,cy,cz-1)))
) then move_cam_hash_2 hash cx cy cz false 'p'
| 'a' -> camera_angle_y := !camera_angle_y + 30
| 'e' -> camera_angle_y := !camera_angle_y - 30
| _ -> () ;;
let manage_unexisting_chunk hash ch_x ch_y ch_z screen_wd screen_ht fov =
try
draw_multiples_cubes_colored_hash (Hashtbl.find hash (ch_x, ch_y, ch_z)) screen_wd screen_ht fov
with
| Not_found -> () ;;
let render_chunks hash camx camy camz ch_distance screen_wd screen_ht fov =
let arr = Array.make ((2*ch_distance + 1)*(2*ch_distance + 1)*(2*ch_distance + 1)) ((0, 0), (0, 99)) in
let id = ref 0 in
for i = -ch_distance to ch_distance do
for j = -ch_distance to ch_distance do
for k = -ch_distance to ch_distance do
arr.(!id) <- ((camx+i, camy+j), (camz+k, (abs i) + (abs j) + (abs k)));
incr id
done
done
done;
let sort_fct elt1 elt2 =
(snd (snd elt2)) - (snd (snd elt1))
in
Array.sort sort_fct arr ;
for i = 0 to (Array.length arr -1) do
(*Printf.printf "[%d, %d, %d] (%d)" (fst (fst arr.(i))) (snd (fst arr.(i))) (fst (snd arr.(i))) (snd (snd arr.(i)));
Stdlib.print_endline " ";*)
manage_unexisting_chunk hash (fst (fst arr.(i))) (snd (fst arr.(i))) (fst (snd arr.(i))) screen_wd screen_ht fov ;
done ;;
let play_dos laby =
try
Stdlib.print_endline "Building terrain...";
cheesify laby;
Stdlib.print_endline "Converting terrain...";
let hash = chunkify_2 laby 2 in
camera_xyz.z <- -. (1.5) ;
camera_xyz.x <- -. (float_of_int width) /. 2. ;
camera_xyz.y <- -. (float_of_int height) /. 2. ;
(*print_cubes cs ;*)
while true do
ignore (Sys.command "clear") ;
Stdlib.print_endline "Rendering terrain...";
auto_synchronize false;
open_graph " 1500x1000";
set_color black;
fill_poly [|(0, 0); (__width__, 0); (__width__, __height__); (0, __height__); (0, 0)|];
let (ch_x, ch_y, ch_z) = coords_to_chunk_f (-. camera_xyz.x) (-. camera_xyz.y) camera_xyz.z in
(*draw_multiples_cubes_colored_hash (Hashtbl.find hash (ch_x, ch_y, ch_z)) __width__ __height__ fov ;*)
render_chunks hash ch_x ch_y ch_z chunk_dist __width__ __height__ fov ;
auto_synchronize true;
Printf.printf "current pos : (%f, %f, %f)\n" (-. camera_xyz.x) (-. camera_xyz.y) camera_xyz.z;
Printf.printf "current chunk : (%d, %d, %d)" ch_x ch_y ch_z;
Stdlib.print_endline " ";
let usr_input = get1char () in
move_cam_hash_2 hash ch_x ch_y ch_z true usr_input
done ;
()
with
| Not_found -> Stdlib.print_endline "Looks like you tried to load an uninitialized chunk..." ;;
play_dos laby ;;