scrambler/main_test.ml

988 lines
33 KiB
OCaml

open Graphics ;;
Random.self_init () ;;
(* use Ctrl+F with 'WALUIGI_TIME' to look for sections *)
(* ------------------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------------------- *)
(* WALUIGI_TIME Types + Constants *)
exception ReturnBool of bool ;;
exception ReturnInt of int ;;
exception ReturnIntArr of int array * int ;;
let __width__ = 1200
and __height__ = 800 ;;
let __istr__ = " 1200x800" ;;
let univ_dt = 0.003 ;;
type pt_2d = {
mutable x : float ;
mutable y : float ;
} ;;
type polygon = {
vertexes : pt_2d array ;
rgb : int ;
xmin : float ;
xmax : float ;
ymin : float ;
ymax : float ;
mutable restitution : float ;
score : int ;
} ;;
type sphere = {
center : pt_2d ;
radius : float ;
rgb : int ;
xmin : float ;
xmax : float ;
ymin : float ;
ymax : float ;
mutable restitution : float ;
score : int ;
} ;;
type flipper_side = Left | Right ;;
type flipper = {
side : flipper_side ;
xy : pt_2d ;
radius : float ;
length : float ;
mutable theta : float (* in degrees *) ;
mutable dtheta : float ;
agmin : float ;
agmax : float ;
vtxs : polygon
} ;;
type ball = {
mutable active : bool ;
radius : float ;
mass : float ;
rgb : int ;
xy : pt_2d ;
v : pt_2d ;
a : pt_2d ;
fres : pt_2d ;
} ;;
(* --- *)
let default_polygon = {
vertexes = [||] ;
rgb = 0 ;
xmin = 1. ;
xmax = -. 1. ;
ymin = 1. ;
ymax = -. 1. ;
restitution = 0. ;
score = 0 ;
} ;;
let default_sphere = {
center = {x = 0. ; y = 0.} ;
rgb = 0 ;
radius = -. 1. ;
xmin = 1. ;
xmax = -. 1. ;
ymin = 1. ;
ymax = -. 1. ;
restitution = 0. ;
score = 0 ;
} ;;
let default_flipper = {
side = Left ;
xy = {x = 0. ; y = 0.} ;
radius = 0. ;
length = 0. ;
theta = 0. (* in degrees *) ;
dtheta = 0. ;
agmin = 0. ;
agmax = 0. ;
vtxs = default_polygon ;
} ;;
let univ_g = 750.0 ;;
let pi = 3.14159265358979343 ;;
let epsilon = (1. /. 131072.) ;;
let winBL = {
x = 0. ;
y = 0. ;
} ;;
let winTR = {
x = 1200. ;
y = 800. ;
}
let winball = {
x = 750. ;
y = 500. ;
}
let gforce = {x = 0. ; y = -. univ_g} ;;
let remaining = ref 8 ;;
let score = ref 0 ;;
(* ------------------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------------------- *)
(* WALUIGI_TIME Threads *)
let n_threads = 8 ;;
let beep_boop = Array.make n_threads false ;;
let beep_id = ref 0 ;;
let playbeep id =
while false do
if beep_boop.(id) then begin
ignore (Unix.system "./sound wah/scored_hit.wav") ;
beep_boop.(id) <- false ;
end;
Unix.sleepf univ_dt ;
done;;
let beep_list = Array.init n_threads (fun k -> Thread.create playbeep k) ;;
(**)
let play_music () =
while false do
ignore (Unix.system "./sound wah/wah_metal.wav") ;
ignore (Unix.system "./sound wah/wah_eurobeat.wav") ;
ignore (Unix.system "./sound wah/wah_hardcore.wav") ;
done;;
let theme_thr = Thread.create play_music () ;;
(* ------------------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------------------- *)
(* WALUIGI_TIME Arithmetical operations *)
let rec pw x n = match n with
| 0 -> 1
| 1 -> x
| k when k mod 2 = 0 -> pw (x*x) (n/2)
| k -> x * (pw (x*x) (n/2)) ;;
let rec pwf x n = match n with
| 0 -> 1.
| 1 -> x
| k when k mod 2 = 0 -> pwf (x *. x) (n/2)
| k -> x *. (pwf (x *. x) (n/2)) ;;
let rec ln10 n = match n with
| k when k < 0 -> failwith "Are you sure about that ?"
| k when k < 10 -> 0
| k -> 1 + ln10 (k/10) ;;
let convexf x y theta =
(1.0 -. theta) *. x +. theta *. y ;;
let absf = function
| x when x < 0.0 -> -. x
| x -> x ;;
let rec expand_fl = function
| k when float_of_int (int_of_float k) = k -> int_of_float k
| k -> expand_fl (10.0 *. k) ;;
let incree = function
| k when k < 10 -> 0
| _ -> 1 ;;
let round x n =
float_of_int (int_of_float (x *. pwf 10. n)) /. (pwf 10. n);;
(* ------------------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------------------- *)
(* WALUIGI_TIME Dynamic Arrays *)
type 'a dynamic = {
mutable len : int ;
mutable memlen : int ;
mutable tab : 'a array
} ;;
let dyn_create (elt : 'a) =
{
len = 0 ;
memlen = 16 ;
tab = Array.make 16 elt
} ;;
let dyn_add (dyn : 'a dynamic) (elt : 'a) =
if dyn.len = dyn.memlen then begin
let _new = Array.make (2 * dyn.memlen) dyn.tab.(0) in
for i = 0 to dyn.memlen -1 do
_new.(i) <- dyn.tab.(i)
done;
dyn.tab <- _new ;
dyn.memlen <- dyn.memlen * 2 ;
end;
dyn.tab.(dyn.len) <- elt ;
dyn.len <- dyn.len +1 ;;
let dyn_remove (dyn : 'a dynamic) (elt : 'a) =
try
for i = 0 to dyn.len -1 do
if dyn.tab.(i) = elt then
raise (ReturnInt i)
done;
raise (ReturnInt (-1))
with
| ReturnInt (-1) -> ()
| ReturnInt k ->
for i = k to dyn.len -2 do
dyn.tab.(i) <- dyn.tab.(i+1)
done;
dyn.len <- dyn.len -1 ;
if (dyn.memlen >= 32) && (dyn.len * 4 <= dyn.memlen) then begin
let _new = Array.make (dyn.memlen/2) dyn.tab.(0) in
for i = 0 to dyn.len -1 do
_new.(i) <- dyn.tab.(i)
done;
dyn.tab <- _new ;
dyn.memlen <- dyn.memlen/2 ;
end ;;
let dyn_fold_left (f : 'b -> 'a -> 'b) (acc0 : 'b) (dyn : 'a dynamic) =
let acc = ref acc0 in
for i = 0 to dyn.len -1 do
acc := f !acc dyn.tab.(i)
done;
!acc ;;
(* ------------------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------------------- *)
(* WALUIGI_TIME Arithmetical operations *)
let vect_convexf (px : pt_2d) (py : pt_2d) theta =
{
x = convexf px.x py.x theta ;
y = convexf px.y py.y theta ;
} ;;
let vect_sum_2D (p1 : pt_2d) (p2 : pt_2d) =
{
x = p1.x +. p2.x ;
y = p1.y +. p2.y ;
} ;;
let vect_diff_2D (p1 : pt_2d) (p2 : pt_2d) =
{
x = p1.x -. p2.x ;
y = p1.y -. p2.y ;
} ;;
let vect_mult_2D (p1 : pt_2d) (lambda : float) =
{
x = p1.x *. lambda ;
y = p1.y *. lambda ;
} ;;
let vect_midpoint_2D (p1 : pt_2d) (p2 : pt_2d) =
{
x = (p1.x +. p2.x) /. 2.0 ;
y = (p1.y +. p2.y) /. 2.0 ;
} ;;
let vect_normal_2D (p1 : pt_2d) (p2 : pt_2d) =
{
x = -. (p2.y -. p1.y) ;
y = (p2.x -. p1.x) ;
} ;;
let return_proj_of_point (m : pt_2d) (spt : pt_2d) (ept : pt_2d) =
match (-. ((ept.x -. spt.x) *. (spt.x -. m.x) +. (ept.y -. spt.y) *. (spt.y -. m.y)) /. ((ept.x -. spt.x) *. (ept.x -. spt.x) +. (ept.y -. spt.y) *. (ept.y -. spt.y))) with
| k when k >= 0. && k <= 1. -> (vect_convexf spt ept k)
| k when k < 0. -> spt
| k -> ept ;;
let return_proj_of_point_D (m : pt_2d) (spt : pt_2d) (ept : pt_2d) =
let theta = (-. ((ept.x -. spt.x) *. (spt.x -. m.x) +. (ept.y -. spt.y) *. (spt.y -. m.y)) /. ((ept.x -. spt.x) *. (ept.x -. spt.x) +. (ept.y -. spt.y) *. (ept.y -. spt.y))) in
(vect_convexf spt ept theta) ;;
let vect_dot_product_2D (p1 : pt_2d) (p2 : pt_2d) =
p1.x *. p2.x +. p1.y *. p2.y ;;
let vect_norm_2D (p1 : pt_2d) =
Float.sqrt (vect_dot_product_2D p1 p1) ;;
let vect_dist_2D (p1 : pt_2d) (p2 : pt_2d) =
vect_norm_2D (vect_diff_2D p1 p2) ;;
let vect_scale_2D (v1 : pt_2d) (v2 : pt_2d) =
vect_mult_2D v1 ((vect_norm_2D v2) /. (vect_norm_2D v1)) ;;
let vect_normalize_2D (v1 : pt_2d) =
vect_mult_2D v1 (1.0 /. (vect_norm_2D v1)) ;;
let vect_symmetry (m : pt_2d) (p1 : pt_2d) (p2 : pt_2d) =
let proj = return_proj_of_point_D m p1 p2 in
let ortho = vect_diff_2D proj m in
vect_sum_2D (vect_sum_2D ortho ortho) m ;;
(* ------------------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------------------- *)
(* WALUIGI_TIME Physics functions *)
let step_one_ball (b : ball) (dt : float) =
{
x = b.xy.x +. b.v.x *. dt ;
y = b.xy.y +. b.v.y *. dt ;
} ;;
let is_in_bounding_box_p (b : ball) (poly : polygon) =
(b.xy.x +. b.radius >= poly.xmin) && (b.xy.x -. b.radius <= poly.xmax) &&
(b.xy.y +. b.radius >= poly.ymin) && (b.xy.y -. b.radius <= poly.ymax) ;;
let is_in_bounding_box_s (b : ball) (s : sphere) =
(b.xy.x +. b.radius >= s.xmin) && (b.xy.x -. b.radius <= s.xmax) &&
(b.xy.y +. b.radius >= s.ymin) && (b.xy.y -. b.radius <= s.ymax) ;;
let distance_line_segment (m : pt_2d) (spt : pt_2d) (ept : pt_2d) =
match (-. ((ept.x -. spt.x) *. (spt.x -. m.x) +. (ept.y -. spt.y) *. (spt.y -. m.y)) /. ((ept.x -. spt.x) *. (ept.x -. spt.x) +. (ept.y -. spt.y) *. (ept.y -. spt.y))) with
| k when k >= 0. && k <= 1. -> vect_dist_2D (vect_convexf spt ept k) m
| k when k < 0. -> vect_dist_2D spt m
| k -> vect_dist_2D ept m ;;
let distance_infinite_segment (m : pt_2d) (spt : pt_2d) (ept : pt_2d) =
let theta = (-. ((ept.x -. spt.x) *. (spt.x -. m.x) +. (ept.y -. spt.y) *. (spt.y -. m.y)) /. ((ept.x -. spt.x) *. (ept.x -. spt.x) +. (ept.y -. spt.y) *. (ept.y -. spt.y))) in
vect_dist_2D (vect_convexf spt ept theta) m ;;
let is_collision_p (b : ball) (poly : polygon) (dt : float) =
if not (is_in_bounding_box_p b poly) then
([||], 0)
else begin
try
let mind = ref b.radius
and minidx = Array.make 3 (-1)
and minarrid = ref 0 in
for i = 0 to Array.length poly.vertexes - 1 do
let dst = (distance_line_segment (step_one_ball b dt) poly.vertexes.(i) poly.vertexes.((i+1) mod Array.length poly.vertexes)) in
if dst <= !mind -. epsilon then begin
mind := dst ;
minidx.(0) <- i ;
minidx.(1) <- (-1) ;
minidx.(2) <- (-1) ;
minarrid := 1;
end
else if dst <= !mind then begin
minidx.(!minarrid) <- i ;
incr minarrid ;
end
done;
raise (ReturnIntArr (minidx, !minarrid))
with
| ReturnIntArr (a, b) -> (a, b)
| Invalid_argument _ -> failwith "ok then"
end ;;
let playbeep () =
beep_boop.(!beep_id) <- true ;
beep_id := (!beep_id+1) mod n_threads ;;
let is_collision_s (b : ball) (s : sphere) (dt : float) =
if not (is_in_bounding_box_s b s) then
false
else
vect_dist_2D (step_one_ball b dt) (s.center) <= (s.radius +. b.radius) ;;
let update_ball_data (b : ball) (polys : polygon array) (spheres : sphere array) (flips : flipper dynamic) (dt : float) =
b.fres.x <- 0. ;
b.fres.y <- 0. ;
for p = 0 to (Array.length polys -1) do
let (hitarr, hitlen) = (is_collision_p b polys.(p) dt) in
if hitlen > 0 then begin
for h = 0 to hitlen -1 do
let hit = hitarr.(h) in
score := !score + polys.(p).score ;
if h = 0 && polys.(p).score > 0 then
playbeep () ;
if polys.(p).restitution = 0. then begin
b.active <- false ;
decr remaining ;
end;
(* apply normal reaction force *)
let hit2 = (hit +1) mod (Array.length polys.(p).vertexes) in
let proj = return_proj_of_point b.xy polys.(p).vertexes.(hit) polys.(p).vertexes.(hit2) in
let proj_n = vect_normalize_2D (vect_diff_2D b.xy proj) in
let scal = (vect_dot_product_2D (vect_normalize_2D gforce) proj_n) in
if scal > 0. then begin
let reaction_force_2 = vect_mult_2D proj_n (univ_g *. b.mass *. scal) in
b.fres.x <- b.fres.x +. reaction_force_2.x *. polys.(p).restitution /. float_of_int hitlen ;
b.fres.y <- b.fres.y +. reaction_force_2.y *. polys.(p).restitution /. float_of_int hitlen ;
end;
(* change velocity according to angle *)
if hitlen = 1 then begin
let director = vect_diff_2D polys.(p).vertexes.(hit2) polys.(p).vertexes.(hit) in
let symmetric = vect_symmetry b.v {x = 0. ; y = 0.} director in
b.v.x <- symmetric.x ;
b.v.y <- symmetric.y ;
end
else begin
let newv = vect_mult_2D (vect_normalize_2D (vect_diff_2D b.xy proj)) (vect_norm_2D b.v) in
b.v.x <- newv.x ;
b.v.y <- newv.y ;
end
done
end
done ;
for s = 0 to (Array.length spheres -1) do
if is_collision_s b spheres.(s) dt then begin
score := !score + spheres.(s).score ;
if spheres.(s).score > 0 then
playbeep () ;
if spheres.(s).restitution = 0. then begin
b.active <- false ;
decr remaining ;
end;
(* apply normal reaction force *)
let proj_n = vect_normalize_2D (vect_diff_2D b.xy spheres.(s).center) in
let scal = (vect_dot_product_2D (vect_normalize_2D gforce) proj_n) in
if scal > 0. then begin
let reaction_force_2 = vect_mult_2D proj_n (univ_g *. b.mass *. scal) in
b.fres.x <- b.fres.x +. reaction_force_2.x *. spheres.(s).restitution *. 1.1 ;
b.fres.y <- b.fres.y +. reaction_force_2.y *. spheres.(s).restitution *. 1.1 ;
end;
(* change velocity according to angle *)
let theta = b.radius /. (vect_norm_2D (vect_diff_2D b.xy spheres.(s).center)) in
let intersection = (vect_convexf b.xy spheres.(s).center theta) in
let director = vect_normal_2D intersection (vect_sum_2D intersection proj_n) in
let symmetric = vect_symmetry b.v {x = 0. ; y = 0.} director in
b.v.x <- symmetric.x ;
b.v.y <- symmetric.y ;
end
done ;
for f = 0 to flips.len -1 do
let (hitarr, hitlen) = (is_collision_p b flips.tab.(f).vtxs dt) in
if hitlen > 0 then begin
for h = 0 to hitlen -1 do
let hit = hitarr.(h) in
(* apply normal reaction force *)
let hit2 = (hit +1) mod (Array.length flips.tab.(f).vtxs.vertexes) in
let proj = return_proj_of_point b.xy flips.tab.(f).vtxs.vertexes.(hit) flips.tab.(f).vtxs.vertexes.(hit2) in
let proj_n = vect_normalize_2D (vect_diff_2D b.xy proj) in
let scal = (vect_dot_product_2D (vect_normalize_2D gforce) proj_n) in
if scal > 0. then begin
let reaction_force_2 = vect_mult_2D proj_n (univ_g *. b.mass *. scal) in
b.fres.x <- b.fres.x +. reaction_force_2.x *. flips.tab.(f).vtxs.restitution /. float_of_int hitlen ;
b.fres.y <- b.fres.y +. reaction_force_2.y *. flips.tab.(f).vtxs.restitution /. float_of_int hitlen ;
end;
(* change velocity according to angle *)
if hitlen = 1 then begin
let director = vect_diff_2D flips.tab.(f).vtxs.vertexes.(hit2) flips.tab.(f).vtxs.vertexes.(hit) in
let symmetric = vect_symmetry b.v {x = 0. ; y = 0.} director in
b.v.x <- symmetric.x ;
b.v.y <- symmetric.y ;
end
else begin
let newv = vect_mult_2D (vect_normalize_2D (vect_diff_2D b.xy proj)) (vect_norm_2D b.v) in
b.v.x <- newv.x ;
b.v.y <- newv.y ;
end;
(* add relative velocity [disabled for physical reasons] *)
if false && ((flips.tab.(f).side = Left && flips.tab.(f).dtheta > 0.) || (flips.tab.(f).side = Right && flips.tab.(f).dtheta < 0.)) then begin
b.v.x <- 0.5 *. b.v.x +. flips.tab.(f).dtheta *. 3.14159 /. 180. *. (vect_dist_2D flips.tab.(f).xy b.xy) *. (cos (flips.tab.(f).theta *. 3.14159 /. 180.));
b.v.y <- 0.5 *. b.v.y +. flips.tab.(f).dtheta *. 3.14159 /. 180. *. (vect_dist_2D flips.tab.(f).xy b.xy) *. (sin (flips.tab.(f).theta *. 3.14159 /. 180.));
end
done
end
done;
(* P = mg *)
b.fres.y <- b.fres.y -. univ_g *. b.mass ;
(* PFD : ma = sum(F) *)
b.a.x <- b.fres.x /. b.mass ;
b.a.y <- b.fres.y /. b.mass ;
b.v.x <- b.v.x +. b.a.x *. dt ;
b.v.y <- b.v.y +. b.a.y *. dt ;
b.xy.x <- b.xy.x +. b.v.x *. dt ;
b.xy.y <- b.xy.y +. b.v.y *. dt ;;
let update_balls (bl : ball array) (polys : polygon array) (spheres : sphere array) (flips : flipper dynamic) (dt : float) =
for b = 0 to Array.length bl -1 do
if bl.(b).active then
update_ball_data bl.(b) polys spheres flips dt
done ;;
let update_flippers (flips : flipper dynamic) (dt : float) =
for fl = 0 to flips.len -1 do
if flips.tab.(fl).dtheta <> 0. then begin
let x0 = flips.tab.(fl).xy.x
and y0 = flips.tab.(fl).xy.y
and rd = flips.tab.(fl).radius
and len = flips.tab.(fl).length
and theta0 = flips.tab.(fl).theta in
match flips.tab.(fl).side with
| Left ->
let theta_dt = flips.tab.(fl).theta +. flips.tab.(fl).dtheta *. dt in
if theta_dt > flips.tab.(fl).agmax then
flips.tab.(fl).dtheta <- -.(flips.tab.(fl).dtheta) ;
if theta_dt < flips.tab.(fl).agmin then
flips.tab.(fl).dtheta <- 0. ;
flips.tab.(fl).theta <- theta_dt ;
flips.tab.(fl).vtxs.vertexes.(0) <- {
x = x0 +. len *. (cos (theta0 *. 3.14159 /. 180.));
y = y0 +. len *. (sin (theta0 *. 3.14159 /. 180.))
};
flips.tab.(fl).vtxs.vertexes.(1) <- {
x = x0 +. rd *. (cos ((theta0 +. 90.) *. 3.14159 /. 180.));
y = y0 +. rd *. (sin ((theta0 +. 90.) *. 3.14159 /. 180.))
};
flips.tab.(fl).vtxs.vertexes.(2) <- {
x = x0 +. rd *. (cos ((theta0 -. 90.) *. 3.14159 /. 180.));
y = y0 +. rd *. (sin ((theta0 -. 90.) *. 3.14159 /. 180.))
};
| Right ->
let theta_dt = flips.tab.(fl).theta +. flips.tab.(fl).dtheta *. dt in
if theta_dt > flips.tab.(fl).agmax then
flips.tab.(fl).dtheta <- 0. ;
if theta_dt < flips.tab.(fl).agmin then
flips.tab.(fl).dtheta <- -.(flips.tab.(fl).dtheta) ;
flips.tab.(fl).theta <- theta_dt ;
flips.tab.(fl).vtxs.vertexes.(0) <- {
x = x0 +. len *. (cos (theta0 *. 3.14159 /. 180.));
y = y0 +. len *. (sin (theta0 *. 3.14159 /. 180.))
};
flips.tab.(fl).vtxs.vertexes.(1) <- {
x = x0 +. rd *. (cos ((theta0 +. 90.) *. 3.14159 /. 180.));
y = y0 +. rd *. (sin ((theta0 +. 90.) *. 3.14159 /. 180.))
};
flips.tab.(fl).vtxs.vertexes.(2) <- {
x = x0 +. rd *. (cos ((theta0 -. 90.) *. 3.14159 /. 180.));
y = y0 +. rd *. (sin ((theta0 -. 90.) *. 3.14159 /. 180.))
};
end
done ;;
(* ------------------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------------------- *)
(* WALUIGI_TIME Graphics fcts *)
let draw_integer x0 y n0 r =
(* 7-seg display *)
let n = ref n0 in
let size = ln10 n0 in
let len = r/3 in
let offset = size*(len*11/7)/2 in
for i = 0 to size do
let x = x0 + offset - i*(len*11/7) in
if Array.mem (!n mod 10) [|0; 4; 5; 6; 7; 8; 9|] then
draw_poly_line [|(x-len/2, y+len); (x-len/2, y)|];
if Array.mem (!n mod 10) [|0; 2; 3; 5; 6; 7; 8; 9|] then
draw_poly_line [|(x-len/2, y+len); (x+len/2, y+len)|];
if Array.mem (!n mod 10) [|0; 1; 2; 3; 4; 7; 8; 9|] then
draw_poly_line [|(x+len/2, y+len); (x+len/2, y)|];
if Array.mem (!n mod 10) [|2; 3; 4; 5; 6; 8; 9|] then
draw_poly_line [|(x-len/2, y); (x+len/2, y)|];
if Array.mem (!n mod 10) [|0; 1; 3; 4; 5; 6; 7; 8; 9|] then
draw_poly_line [|(x+len/2, y-len); (x+len/2, y)|];
if Array.mem (!n mod 10) [|0; 2; 3; 5; 6; 8; 9|] then
draw_poly_line [|(x-len/2, y-len); (x+len/2, y-len)|];
if Array.mem (!n mod 10) [|0; 2; 6; 8|] then
draw_poly_line [|(x-len/2, y-len); (x-len/2, y)|];
n := !n/10;
done ;;
let draw_integer_alignedleft x0 y n0 len =
(* 7-seg display 2 *)
set_line_width (max 1 (len/4));
let n = ref n0 in
let size = ln10 (abs n0) in
let cur_x = ref (x0 + size*(len*11/7)) in
if !n < 0 then begin
n := !n * (-1);
draw_poly_line [|(x0, y); (x0+len, y)|];
cur_x := !cur_x + (len*11/7)
end;
for i = 0 to size do
let x = !cur_x in
if Array.mem (!n mod 10) [|0; 4; 5; 6; 7; 8; 9|] then
draw_poly_line [|(x, y+len); (x, y)|];
if Array.mem (!n mod 10) [|0; 2; 3; 5; 6; 7; 8; 9|] then
draw_poly_line [|(x, y+len); (x+len, y+len)|];
if Array.mem (!n mod 10) [|0; 1; 2; 3; 4; 7; 8; 9|] then
draw_poly_line [|(x+len, y+len); (x+len, y)|];
if Array.mem (!n mod 10) [|2; 3; 4; 5; 6; 8; 9|] then
draw_poly_line [|(x, y); (x+len, y)|];
if Array.mem (!n mod 10) [|0; 1; 3; 4; 5; 6; 7; 8; 9|] then
draw_poly_line [|(x+len, y-len); (x+len, y)|];
if Array.mem (!n mod 10) [|0; 2; 3; 5; 6; 8; 9|] then
draw_poly_line [|(x, y-len); (x+len, y-len)|];
if Array.mem (!n mod 10) [|0; 2; 6; 8|] then
draw_poly_line [|(x, y-len); (x, y)|];
n := !n/10;
cur_x := !cur_x - (len*11/7);
done ;;
let draw_float x y n0 r =
let n = absf n0 in
let ent = int_of_float n in
let frac = expand_fl (n -. float_of_int ent) in
draw_integer_alignedleft x y ent r ;
fill_circle (x + (ln10 ent) * r * 11/7 + 3*r/2) (y - r) 3 ;
draw_integer_alignedleft (x + 3*r/5 + (ln10 ent + 1)*r*11/7) y ((100 * frac) / (pw 10 (1+ ln10 frac))) r ;;
let draw_polygon (poly : polygon) =
set_color (rgb (poly.rgb mod 256) ((poly.rgb / 256) mod 256) ((poly.rgb / (256*256)) mod 256)) ;
fill_poly (Array.init (Array.length poly.vertexes) (fun i -> (int_of_float poly.vertexes.(i).x, int_of_float poly.vertexes.(i).y))) ;;
let draw_sphere (s : sphere) =
set_color (rgb (s.rgb mod 256) ((s.rgb / 256) mod 256) ((s.rgb / (256*256)) mod 256)) ;
fill_circle (int_of_float s.center.x) (int_of_float s.center.y) (int_of_float s.radius) ;;
let draw_flipper (f : flipper) =
set_color (rgb 64 64 64) ;
fill_circle (int_of_float f.xy.x) (int_of_float f.xy.y) (int_of_float f.radius) ;
draw_polygon f.vtxs ;;
let draw_ball (b : ball) =
set_color (rgb (b.rgb mod 256) ((b.rgb / 256) mod 256) ((b.rgb / (256*256)) mod 256)) ;
fill_circle (int_of_float b.xy.x) (int_of_float b.xy.y) (int_of_float b.radius) ;
set_line_width 4 ;
draw_circle (int_of_float b.xy.x) (int_of_float b.xy.y) (int_of_float b.radius) ;;
let draw_all_balls (bs : ball array) =
for k = 0 to Array.length bs -1 do
if bs.(k).active then
draw_ball bs.(k)
done ;;
(* ------------------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------------------- *)
(* WALUIGI_TIME Misc fcts *)
let get1char_plus () =
if key_pressed () then
read_key ()
else
'@' ;;
let control_flippers (flips : flipper dynamic) =
match get1char_plus () with
| 'q' ->
for fl = 0 to flips.len -1 do
if flips.tab.(fl).side = Left && flips.tab.(fl).dtheta = 0. then
flips.tab.(fl).dtheta <- 600. ;
done
| 'd' ->
for fl = 0 to flips.len -1 do
if flips.tab.(fl).side = Right && flips.tab.(fl).dtheta = 0. then
flips.tab.(fl).dtheta <- -. 600. ;
done
| _ -> () ;;
let create_ball (r : float) (x0 : int) (y0 : int) (m : float) (red : int) (green : int) (blue : int) =
{
active = true ;
radius = r ;
rgb = red + 256 * green + 256 * 256 * blue ;
mass = m;
xy = {x = float_of_int x0 +. (Random.float 30.0 -. 15.0); y = float_of_int y0 +. (Random.float 30.0 -. 15.0)} ;
v = {x = 0. ; y = 0.} ;
a = {x = 0. ; y = 0.} ;
fres = {x = 0. ; y = 0.} ;
} ;;
let create_polygon (arr : (int * int) array) (rest : float) (pts : int) (red : int) (green : int) (blue : int) =
{
vertexes = Array.init (Array.length arr) (fun k -> {x = float_of_int (fst arr.(k)); y = float_of_int (snd arr.(k))}) ;
rgb = red + 256 * green + 256 * 256 * blue ;
xmin = float_of_int (Array.fold_left (fun acc k -> min acc (fst k)) 99999 arr) ;
xmax = float_of_int (Array.fold_left (fun acc k -> max acc (fst k)) (-99999) arr) ;
ymin = float_of_int (Array.fold_left (fun acc k -> min acc (snd k)) 99999 arr) ;
ymax = float_of_int (Array.fold_left (fun acc k -> max acc (snd k)) (-99999) arr) ;
restitution = rest ;
score = pts ;
} ;;
let create_sphere (x00 : int) (y00 : int) (rd : float) (rest : float) (pts : int) (red : int) (green : int) (blue : int) =
let x0 = float_of_int x00 and y0 = float_of_int y00 in
{
center = {x = x0 ; y = y0};
rgb = red + 256 * green + 256 * 256 * blue ;
radius = rd ;
xmin = x0 -. rd ;
xmax = x0 +. rd ;
ymin = y0 -. rd ;
ymax = y0 +. rd ;
restitution = rest ;
score = pts ;
} ;;
let create_flipper (side : flipper_side) (x0 : int) (y0 : int) (rd : float) (len : float) (theta0 : float) (thmin : float) (thmax : float) =
{
side = side ;
xy = {x = float_of_int x0 ; y = float_of_int y0} ;
radius = rd ;
length = len ;
theta = theta0 (* in degrees *) ;
dtheta = 0. ;
agmin = thmin ;
agmax = thmax ;
vtxs = create_polygon [|
(x0 + int_of_float (len *. (cos (theta0 *. 3.14159 /. 180.))) , y0 + int_of_float (len *. (sin (theta0 *. 3.14159 /. 180.))));
(x0 + int_of_float (rd *. (cos ((theta0 -. 90.) *. 3.14159 /. 180.))), y0 + int_of_float (rd *. (sin ((theta0 -. 90.) *. 3.14159 /. 180.))));
(x0 + int_of_float (rd *. (cos ((theta0 +. 90.) *. 3.14159 /. 180.))), y0 + int_of_float (rd *. (sin ((theta0 +. 90.) *. 3.14159 /. 180.))))
|] 1. 0 128 128 128
} ;;
let generate_pinballs (count : int) (r : float) (x0 : int) (y0 : int) (m : float) (red : int) (green : int) (blue : int) =
Array.init count (fun k -> create_ball r x0 y0 m red green blue) ;;
(* ------------------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------------------- *)
(* WALUIGI_TIME Edition functions *)
let customize lvl_name =
open_graph __istr__ ;
set_window_title "WAH" ;
let (res : polygon dynamic) = dyn_create default_polygon in
let stopped = ref false in
let refresh = ref true in
let (cpoly : pt_2d dynamic) = dyn_create {x = 0. ; y = 0.} in
while not !stopped do
Unix.sleepf univ_dt ;
if !refresh then begin
auto_synchronize false ;
clear_graph () ;
refresh := false ;
for p = 0 to res.len -1 do
draw_polygon res.tab.(p)
done;
auto_synchronize true ;
end;
match (get1char_plus ()) with
| 'a' -> (* add current polygon *)
(*Printf.printf "+polygon\n" ;*)
if cpoly.len >= 2 then begin
refresh := true ;
let newVTX = Array.init cpoly.len (fun k -> cpoly.tab.(k)) in
dyn_add res {
vertexes = newVTX ;
rgb = 128 + 255*128 + 255*255*128 ;
xmin = Array.fold_left (fun acc k -> min acc k.x) (999999.) newVTX ;
xmax = Array.fold_left (fun acc k -> max acc k.x) (-.999999.) newVTX ;
ymin = Array.fold_left (fun acc k -> min acc k.y) (999999.) newVTX ;
ymax = Array.fold_left (fun acc k -> max acc k.y) (-.999999.) newVTX ;
restitution = 1. ;
score = 0 ;
} ;
cpoly.len <- 0 ;
end
| 'v' -> (* add a vertex *)
(*Printf.printf "+vertex\n" ;*)
let (mx, my) = mouse_pos () in
dyn_add cpoly {x = float_of_int mx ; y = float_of_int my} ;
| 'c' -> (* clear current polygon *)
(*Printf.printf "cleared\n" ;*)
cpoly.len <- 0 ;
| 'h' ->
stopped := true ;
| _ -> ()
done;
close_graph ();
res ;;
(* ------------------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------------------- *)
(* WALUIGI_TIME Main *)
let simulate (data : polygon dynamic) (dats : sphere dynamic) (flips : flipper dynamic) =
open_graph __istr__ ;
set_window_title "WAH" ;
let pinballs = generate_pinballs 8 10.0 600 800 0.15 255 255 0 in
let stime = Unix.gettimeofday () in
let ctime = ref (Unix.gettimeofday ()) in
while true do
let __start = Unix.gettimeofday () in
auto_synchronize false ;
clear_graph () ;
set_line_width 4 ;
draw_integer 600 100 !remaining 40 ;
set_line_width 1 ;
for d = 0 to dats.len -1 do
draw_sphere dats.tab.(d)
done;
for d = 0 to data.len -1 do
draw_polygon data.tab.(d)
done;
for d = 0 to flips.len -1 do
draw_flipper flips.tab.(d)
done;
draw_all_balls pinballs ;
set_color (rgb 128 128 32) ;
draw_float 25 770 (round (!ctime -. stime) 3) 25 ;
set_color black ;
set_line_width 4 ;
draw_integer 600 770 !score 50 ;
auto_synchronize true ;
control_flippers flips ;
Unix.sleepf univ_dt ;
let __end = Unix.gettimeofday () in
ctime := !ctime +. (__end -. __start) ;
update_balls pinballs data.tab dats.tab flips (__end -. __start) ;
update_flippers flips (__end -. __start) ;
done;
close_graph () ;;
let polygons = dyn_create default_polygon ;;
let spheres = dyn_create default_sphere ;;
let flippers = dyn_create default_flipper ;;
(* |-------------------------------------------------------------------------------------------------------| *)
(* kill platform *)
dyn_add polygons (create_polygon [|(700, -20); (500, -20); (500, 1); (700, 1)|] 0. 0 255 32 32) ;;
(* outer walls *)
dyn_add polygons (create_polygon [|(0, 0); (500, 0); (500, 20); (0, 20)|] 1. 0 32 32 32) ;;
dyn_add polygons (create_polygon [|(700, 0); (1200, 0); (1200, 20); (700, 20)|] 1. 0 32 32 32) ;;
dyn_add polygons (create_polygon [|(0, 800); (500, 800); (500, 780); (0, 780)|] 1. 0 32 32 32) ;;
dyn_add polygons (create_polygon [|(700, 800); (1200, 800); (1200, 780); (700, 780)|] 1. 0 32 32 32) ;;
dyn_add polygons (create_polygon [|(1180, 0); (1200, 0); (1200, 800); (1180, 800)|] 1. 0 32 32 32) ;;
dyn_add polygons (create_polygon [|(0, 0); (20, 0); (20, 800); (0, 800)|] 1. 0 32 32 32) ;;
(* side ramps *)
dyn_add polygons (create_polygon [|(20, 20); (20, 300); (420, 150); (420, 20)|] 1. 0 32 32 32) ;;
dyn_add polygons (create_polygon [|(1200, 20); (1200, 300); (780, 150); (780, 20)|] 1. 0 32 32 32) ;;
(* starting platform *)
dyn_add polygons (create_polygon [|(600, 700); (400, 550); (800, 550)|] 1. 0 32 32 32) ;;
(* |-------------------------------------------------------------------------------------------------------| *)
(* corner scoring spots *)
dyn_add spheres (create_sphere 20 780 30. 1. 50 128 128 32) ;;
dyn_add spheres (create_sphere 1180 780 30. 1. 50 128 128 32) ;;
(* under the starting platform *)
dyn_add spheres (create_sphere 440 550 20. 1. 5 32 128 32) ;;
dyn_add spheres (create_sphere 520 550 20. 1. 5 32 192 32) ;;
dyn_add spheres (create_sphere 600 550 20. 1. 5 32 255 32) ;;
dyn_add spheres (create_sphere 680 550 20. 1. 5 32 192 32) ;;
dyn_add spheres (create_sphere 760 550 20. 1. 5 32 128 32) ;;
dyn_add spheres (create_sphere 480 450 20. 1. 3 32 156 32) ;;
dyn_add spheres (create_sphere 560 450 20. 1. 3 32 220 32) ;;
dyn_add spheres (create_sphere 640 450 20. 1. 3 32 220 32) ;;
dyn_add spheres (create_sphere 720 450 20. 1. 3 32 156 32) ;;
dyn_add spheres (create_sphere 520 350 20. 1. 1 32 192 32) ;;
dyn_add spheres (create_sphere 600 350 20. 1. 1 32 255 32) ;;
dyn_add spheres (create_sphere 680 350 20. 1. 1 32 192 32) ;;
(* left side *)
dyn_add spheres (create_sphere 20 480 10. 1. 3 32 32 192) ;;
dyn_add spheres (create_sphere 95 555 10. 1. 3 32 32 192) ;;
dyn_add spheres (create_sphere 170 630 10. 1. 3 32 32 192) ;;
dyn_add spheres (create_sphere 245 705 10. 1. 3 32 32 192) ;;
dyn_add spheres (create_sphere 320 780 10. 1. 3 32 32 192) ;;
dyn_add spheres (create_sphere 20 630 15. 1. 5 32 32 255) ;;
dyn_add spheres (create_sphere 95 705 15. 1. 5 32 32 255) ;;
dyn_add spheres (create_sphere 170 780 15. 1. 5 32 32 255) ;;
dyn_add spheres (create_sphere 300 300 15. 1. 5 128 128 128) ;;
(* right side *)
dyn_add spheres (create_sphere 1180 480 10. 1. 3 32 32 192) ;;
dyn_add spheres (create_sphere 1105 555 10. 1. 3 32 32 192) ;;
dyn_add spheres (create_sphere 1030 630 10. 1. 3 32 32 192) ;;
dyn_add spheres (create_sphere 965 705 10. 1. 3 32 32 192) ;;
dyn_add spheres (create_sphere 890 780 10. 1. 3 32 32 192) ;;
dyn_add spheres (create_sphere 1180 630 15. 1. 5 32 32 255) ;;
dyn_add spheres (create_sphere 1105 705 15. 1. 5 32 32 255) ;;
dyn_add spheres (create_sphere 1030 780 15. 1. 5 32 32 255) ;;
dyn_add spheres (create_sphere 900 300 15. 1. 5 128 128 128) ;;
(* on the ramps *)
dyn_add spheres (create_sphere 20 300 20. 1. 7 128 128 128) ;;
dyn_add spheres (create_sphere 1180 300 20. 1. 7 128 128 128) ;;
(* |-------------------------------------------------------------------------------------------------------| *)
dyn_add flippers (create_flipper Left 420 125 20. 160. (-. 20.) (-. 20.) 20.) ;;
dyn_add flippers (create_flipper Right 780 125 20. 160. 200. 160. 200.) ;;
(* |-------------------------------------------------------------------------------------------------------| *)
simulate polygons spheres flippers ;;
(*
let create_polygon (arr : (int * int) array) (rest : float) (pts : int) (red : int) (green : int) (blue : int)
let create_sphere (x00 : int) (y00 : int) (radius : float) (rest : float) (pts : int) red green blue
let create_flipper (x0 : int) (y0 : int) (rd : float) (len : float) (theta0 : float) (thmin : float) (thmax : float)
*)
(* ocamlfind ocamlopt -linkpkg -package unix -linkpkg -package graphics -thread -package threads -linkpkg main.ml *)