osutipe/cleaned_sp.py

441 lines
13 KiB
Python

from math import *
import numpy as np
import scipy as scp
from scipy.io import wavfile
import matplotlib.pyplot as plt
import subprocess
import heapq
from pathlib import Path
from time import sleep
def is_data_stereo(raw_global_data:list) -> bool:
"""
self-explainatory
"""
try:
assert(raw_global_data[0][0])
except IndexError:
return False
except AssertionError:
return True
return True
def dist_to_integer(x):
ent = np.floor(x)
if(ent < 0.5):
return ent
else:
return (1-ent)
def is_note_within(fr1, fr2):
if(fr1 > fr2):
return (fr1/fr2 <= NOTE_DIST or dist_to_integer(fr1/fr2) >= OCTAVE_DIST) # same tone or octave
else:
return (fr2/fr1 <= NOTE_DIST or dist_to_integer(fr2/fr1) >= OCTAVE_DIST)
def keep_highest(song_name, offset, songlen, segsize, count, output_name, minfreq=110, maxfreq=5000, ampthr=250):
'''
INPUT : data relative to music + config about the analysis
OUTPUT :
* a list of timings : it contains floats (representing circles) and couple of floats (representing sliders) (e.g. [float, float])
* a list of amplitudes relative to timings
'''
# extracting data from cropped song
sample_rate, raw_song_data = wavfile.read(song_name)
blit = int(sample_rate*segsize) # Te
song_data = [0 for i in range(len(raw_song_data))]
id_start = int(offset*sample_rate)
id_end = min(len(raw_song_data), int((offset+songlen)*sample_rate))
a = 0
if(is_data_stereo(raw_song_data)):
print("Converting to mono...")
for x in range(id_start, id_end):
song_data[x] = raw_song_data[x][0]/2 + raw_song_data[x][1]/2
if(x % (int(len(raw_song_data)/100)) == 0):
print(a, "/ 100")
a += 1
else:
song_data = raw_song_data
print("\nSampleRate : ", sample_rate)
print("SegSize : ", blit)
# calculate the frequencies associated to the FFTs
pfreq = scp.fft.rfftfreq(blit, 1/sample_rate)
# left boundary of segment to crop
current_time = offset
# list of FFTs
fft_list = []
fft_list_untouched = []
# number of samples
k = 0
print("Retrieving freqs from", offset, "to", songlen+offset, "...")
while(current_time < songlen+offset-segsize):
# index corresponding to left boundary
left_id = int(current_time*sample_rate)
# index corresponding to right boundary
right_id = int((current_time+segsize)*sample_rate)
# calculate the fft, append it to fft_list
pff = scp.fft.rfft(song_data[int(current_time*sample_rate):int(sample_rate*(current_time+segsize))])
fft_list.append(pff)
fft_list_untouched.append([ee for ee in pff])
# just to avoid what causes 0.1 + 0.1 == 0.2 to be False
k += 1
current_time = offset + k*segsize
#print(current_time)
print("\n\nSegSize :", segsize, "\nFFT :", len(fft_list), "\nFFT[0] :", len(fft_list[0]), "\npfreq :", len(pfreq), "\n\n")
# -------------------------------------------- Clean song -------------------------------------------- #
pfreq_minid = 0
pfreq_maxid = len(pfreq) -1
while(pfreq[pfreq_minid] < minfreq):
for t in range(len(fft_list)):
fft_list[t][pfreq_minid] = 0+0j
pfreq_minid += 1
while(pfreq[pfreq_maxid] > maxfreq):
for t in range(len(fft_list)):
fft_list[t][pfreq_maxid] = 0+0j
pfreq_maxid -= 1
new_times = []
new_freqs = []
new_ampls = []
new_kept = []
# i = time, j = freq
for i in range(len(fft_list)):
#returns a list of couples [id, value]
elements = heapq.nlargest(count, enumerate(fft_list[i]), key=lambda x: x[1])
for idx in range(len(elements)):
if(elements[idx][0] < len(pfreq)):
new_times.append(offset + i*segsize)
new_freqs.append(pfreq[elements[idx][0]])
new_ampls.append(fft_list[i][elements[idx][0]])
# -------------------------------------------- Get amp distribution -------------------------------------------- #
new_new_amps = [0 for i in range(int(sample_rate*songlen))]
new_new_t = [offset + i/sample_rate for i in range(int(sample_rate*songlen))]
amp_ct = 0
incr_a = segsize*4
len_seg_a = int(sample_rate*incr_a)
count_a = len_seg_a//1000
left_0 = int(sample_rate*(amp_ct+offset))
while(amp_ct < songlen-segsize):
left = int(sample_rate*(amp_ct+offset))
right = int(sample_rate*(amp_ct+offset + incr_a))
#returns a list of couples [id, value]
elements = heapq.nlargest(count_a, enumerate([song_data[i] for i in range(left, right)]), key=lambda x: x[1])
amp_ct += incr_a
for idx in range(len(elements)):
new_new_amps[elements[idx][0]+left-left_0] = song_data[left+elements[idx][0]]
mmxx = max(new_new_amps)
new_new_amps = [nnw*1000/mmxx for nnw in new_new_amps]
# localize peaks
left_id = 0
right_id = 0
a_ampl = 0
in_seg = False
time_d = 0.035
cur_t = 0
last_t = -10.0
locs = [] # amplitudes
loct = [] # times
for i in range(len(new_new_amps)):
if(new_new_amps[i] > 100):
if(not in_seg):
in_seg = True
left_id = i
right_id = i
a_ampl = max(a_ampl, new_new_amps[i])
cur_t = 0
else:
cur_t += 1/sample_rate
if(in_seg and cur_t >= time_d):
in_seg = False
delta_t = (right_id - left_id)/sample_rate
if(np.abs(left_id/sample_rate - last_t) >= 0.01): # these notes are less than 10ms apart !
last_t = right_id/sample_rate
if(delta_t < segsize*1.1):
locs.append(a_ampl)
loct.append((left_id + right_id)/(2*sample_rate) + offset)
else:
locs.append(a_ampl)
loct.append([left_id/sample_rate + offset, right_id/sample_rate + offset])
a_ampl = 0
# -------------------------------------------- Compute freqs -------------------------------------------- #
ssize_0 = segsize/3
locf = [] # frequencies
for k in range(len(locs)):
ktime = 0
ssize = ssize_0
if(type(loct[k]) == float): # circle
ktime = loct[k]
else: # slider
ktime = (loct[k][1]+loct[k][0])/2
ssize = max((loct[k][1]-loct[k][0])/2, ssize_0)
left_id = max(0, int((ktime-ssize/2)*sample_rate))
right_id = min(int((ktime+ssize/2)*sample_rate), len(song_data))
# calculate the fft
pff = scp.fft.rfft(song_data[left_id:right_id])
fmax = pfreq[0]
fampmax = 0
for i in range(1, len(pff)):
if(pfreq[i] > minfreq and pfreq[i] < maxfreq and fampmax < np.abs(pff[i])):
fmax = pfreq[i]
fampmax = np.abs(pff[i])
locf.append(fmax)
# -------------------------------------------- Merge -------------------------------------------- #
k = 0
while(k < len(locs)):
delta_t = 0
if(type(loct[k]) == float):
delta_t += loct[k]
else:
delta_t += (loct[k][0] + loct[k][1])/2
if(type(loct[k-1]) == float):
delta_t -= loct[k-1]
else:
delta_t -= (loct[k-1][0] + loct[k-1][1])/2
if(k > 0 and np.abs(delta_t) < segsize and np.abs(locs[k] - locs[k-1]) < 50 and is_note_within(locf[k], locf[k-1])):
loct[k-1] = [loct[k-1], loct[k]]
locs[k-1] = (locs[k-1] + locs[k])/2
loct[k] = -1
locs[k] = -1
locf[k] = -1
loct.remove(-1)
locs.remove(-1)
locf.remove(-1)
k += 1
# -------------------------------------------- Plot -------------------------------------------- #
plt_loct_all = []
plt_loct = []
plt_locs = []
plt_slidt = []
plt_slids = []
for i in range(len(loct)):
if(type(loct[i]) == float):
plt_loct_all.append(loct[i])
plt_loct.append(loct[i])
plt_locs.append(locs[i])
else:
plt_loct_all.append(loct[i][0])
plt_slidt.append(loct[i][0])
plt_slidt.append(loct[i][1])
plt_slids.append(locs[i])
plt_slids.append(locs[i])
plt.plot(new_new_t, new_new_amps, "y-", label="amplitude (ua)")
plt.plot(plt_loct, plt_locs, "ro", label="circles")
plt.plot(plt_slidt, plt_slids, "go", label="sliders")
plt.plot(plt_loct_all, locf, "mo", label="frequencies (Hz)")
plt.legend(loc="upper left")
'''plt.plot(new_times, new_freqs)
plt.plot(new_times, [elt*1000/mx for elt in new_ampls])
plt.plot(new_times, new_kept, "bo")'''
plt.grid()
plt.show()
# -------------------------------------------- Write -------------------------------------------- #
f = open("result_bad_apple[90].txt", "w")
f.write("Song name : " + song_name + "\n")
f.write("Start : " + str(offset) + "\n")
f.write("End : " + str(offset+songlen) + "\n\n")
f.write("Hit Objects : \n")
for ct in loct:
f.write(str(ct))
f.write("\n")
f.close()
return (loct, locs)
def convert_to_wav(song_name:str, output_file="audio.wav") -> str:
"""
Converts the song to .wav, only if it's not already in wave format.
Currently relies on file extension.
Returns: the song_name that should be used afterwards.
"""
extension = Path(song_name).suffix
if(extension == ".mp3" or extension == ".ogg"):
print("Converting to .wav...")
subprocess.run(["ffmpeg", "-y", "-i", song_name, output_file], shell=False)
return output_file
return song_name
'''
# c-type
SONG_LEN = 7
OFFSET = 0.042
BPM = 149.3
SEGSIZE = 1/(BPM/60)
wavved_song = convert_to_wav("songs/ctype.mp3")
'''
'''
# tetris_2
SONG_LEN = 10
OFFSET = 0
BPM = 157
SEGSIZE = 1/(BPM/60)
wavved_song = convert_to_wav("songs/tetris_2.wav")
'''
'''
# test
SONG_LEN = 1
OFFSET = 0
BPM = 240
SEGSIZE = 1/(BPM/60)
'''
'''
# gmtn
SONG_LEN = 5
OFFSET = 1.652
BPM = 155
SEGSIZE = 1/(BPM/60)
wavved_song = convert_to_wav("songs/furioso melodia.mp3")
'''
'''
# E
SONG_LEN = 15
OFFSET = 2.641
BPM = 155
SEGSIZE = 1/(BPM/60)
wavved_song = convert_to_wav("songs/rushe.mp3")
'''
'''
# Tsubaki
SONG_LEN = 20
OFFSET = 35.659
BPM = 199
SEGSIZE = 1/(BPM/60)
wavved_song = convert_to_wav("songs/TSUBAKI.mp3")
'''
'''
# Owen 1/2
SONG_LEN = 20
OFFSET = 1.008
BPM = 157
SEGSIZE = 1/(BPM/60)
wavved_song = convert_to_wav("songs/owen(157.00024-1008).mp3")
'''
'''
# Owen 2/2
SONG_LEN = 7
OFFSET = 25.466
BPM = 157
SEGSIZE = 1/(BPM/60)
wavved_song = convert_to_wav("songs/owen(157.00024-1008).mp3")
'''
'''
# death
SONG_LEN = 10
OFFSET = 21.750
BPM = 180
SEGSIZE = 1/(BPM/60)
wavved_song = convert_to_wav("songs/Night of Knights.mp3")
'''
'''
# Bad apple
SONG_LEN = 120
OFFSET = 0.152
BPM = 138
SEGSIZE = 1/(BPM/60)
#wavved_song = convert_to_wav("songs/Bad apple (138-152).mp3")
wavved_song = convert_to_wav("songs/Bad apple (138-152)[filtered].wav")
'''
'''
# Freedom dive
SONG_LEN = 7
OFFSET = 1.058
BPM = 222.22
SEGSIZE = 1/(BPM/60)
#wavved_song = convert_to_wav("songs/Freedom Dive (222.22-1058).mp3")
wavved_song = convert_to_wav("songs/Freedom Dive (222.22-1058)[filtered].wav")
'''
'''
# Mevalogania
SONG_LEN = 7
OFFSET = 7.984
BPM = 240
SEGSIZE = 1/(BPM/60)
#wavved_song = convresult_bad_appleert_to_wav("songs/Megalovania(240-7984).mp3")
wavved_song = convert_to_wav("songs/Megalovania(240-7984)[filtered].wav")
'''
SONG_LEN = 0 # length of the song, in seconds
OFFSET = 0 # offset of the 1st note (aka time offset of the first red bar), in seconds
BPM = 0 # BPM
wavved_song = convert_to_wav("insert_song_name_here.wav")
# Do not touch
DIVIDER = 4 # note divider
SEGSIZE = 1/(BPM/60)
NOTE_DIST = (2**(1/4))
OCTAVE_DIST = 0.05
# keep_highest(song_name, offset, songlen, segsize, count, output_name, minfreq=110, maxfreq=5000, ampthr=250):
(loct, locs) = keep_highest(wavved_song, OFFSET, SONG_LEN, SEGSIZE/DIVIDER, 1, "Zblit.wav", minfreq=220, maxfreq=3000, ampthr=800)
'''
minfreq and maxfred are thresholds for frequency analysts (anything outside of [minfreq, maxfreq] will not be accounted for)
ampthr is a threshold for amplitude (arbitrary unit)
'''
''' you can deactivate this if you want (show timings points in terminal) '''
'''
import time
import random
loct2 = []
for k in loct:
if(type(k) == float):
loct2.append(k)
else:
loct2.append(k[0])
loct2.append(k[1])
for i in range(len(loct2)-1):
print("*"*(random.randint(10, 100)))
time.sleep(loct2[i+1]-loct2[i])
print("yipee")
'''