Compare commits
11 Commits
Author | SHA1 | Date |
---|---|---|
|
95e06d3235 | |
|
3ba8a29dd7 | |
|
0bafd0d899 | |
|
568a467a27 | |
|
4ac58100fb | |
|
8834b4929a | |
|
3587adbe2f | |
|
a567d0ef0d | |
|
1453e1d639 | |
|
177a8658f0 | |
|
03156d2154 |
|
@ -8,9 +8,10 @@ def compare_plot():
|
|||
beatmap = sl.Beatmap.from_path(filename)
|
||||
timing = beatmap.timing_points[0]
|
||||
bpm = timing.bpm
|
||||
offset = timing.offset
|
||||
timings, amplitudes = sound_process.process_song(beatmap.audio_filename, bpm, offset=offset, n_iter_2=-1)
|
||||
timings = [x.total_seconds() for x in timings]
|
||||
offset = timing.offset.total_seconds() * 1000
|
||||
data = sound_process.process_song(beatmap.audio_filename, bpm, offset0=offset, n_iter_2=48, divisor=4)
|
||||
|
||||
timings, amplitudes, freqs = [x[0].total_seconds() for x in data], [x[1] for x in data], [x[2] for x in data]
|
||||
|
||||
original_times = [x.time.total_seconds() for x in beatmap.hit_objects(spinners=False) if x.time.total_seconds() <= timings[len(timings) - 1]]
|
||||
|
||||
|
|
|
@ -0,0 +1,279 @@
|
|||
from math import *
|
||||
import numpy as np
|
||||
from scipy.io import wavfile
|
||||
from scipy import signal
|
||||
import matplotlib.pyplot as plt
|
||||
import subprocess
|
||||
import wave as wv
|
||||
import struct
|
||||
import librosa
|
||||
import heapq
|
||||
import scipy
|
||||
import os
|
||||
import random
|
||||
from pathlib import Path
|
||||
from time import sleep
|
||||
from datetime import timedelta
|
||||
|
||||
def adjust_timings(raw_data, snapped_data, indexes, thr=100):
|
||||
"""
|
||||
adjusts weirdly snapped notes
|
||||
"""
|
||||
current = 0
|
||||
|
||||
while(current < len(indexes)):
|
||||
|
||||
if(current < len(indexes) - 3 and current % 2 == 1): # on a 1/4 beat
|
||||
if(snapped_data[indexes[current]] > thr and snapped_data[indexes[current+1]] > thr and snapped_data[indexes[current+2]] > thr and snapped_data[indexes[current+3]] <= thr):
|
||||
# -XXX_
|
||||
snapped_data[indexes[current+3]] = snapped_data[indexes[current+2]]
|
||||
snapped_data[indexes[current+2]] = 0
|
||||
|
||||
if(current > 0 and current < len(indexes) - 1 and current % 2 == 1):
|
||||
if(snapped_data[indexes[current]] > thr and (snapped_data[indexes[current+1]] < thr or snapped_data[indexes[current-1]] < thr)):
|
||||
#_X_
|
||||
'''if(snapped_data[indexes[current-1]] < thr and raw_data[indexes[current-1]] > raw_data[indexes[current+1]]):
|
||||
snapped_data[indexes[current-1]] = snapped_data[indexes[current]]
|
||||
else:
|
||||
snapped_data[indexes[current+1]] = snapped_data[indexes[current]]'''
|
||||
|
||||
snapped_data[indexes[current]] = 0
|
||||
|
||||
current += 1
|
||||
|
||||
print("Resnap done")
|
||||
return snapped_data
|
||||
|
||||
|
||||
|
||||
def snap(data, sample_rate, bpm, divisor, show=False):
|
||||
# adjust time amplitudes to match the given BPM
|
||||
new = [0 for x in range(int(1000*len(data)/sample_rate))] # 1pt per millisecond
|
||||
print("old =", len(data))
|
||||
print("len =", 1000*len(data)/sample_rate)
|
||||
k = 0
|
||||
t = 0
|
||||
percent = 0
|
||||
for i in range(len(data)):
|
||||
|
||||
while(t < i/sample_rate):
|
||||
t = k/(bpm*divisor)
|
||||
k += 60
|
||||
'''
|
||||
if(np.abs(i/sample_rate - k/(bpm*divisor)) > np.abs(i/sample_rate - (k-60)/(bpm*divisor))):
|
||||
k -= 60
|
||||
t = k/(bpm*divisor)'''
|
||||
|
||||
if(i%(len(data)//100) == 0):
|
||||
print(percent, "%")
|
||||
percent += 1
|
||||
|
||||
if(int(t*1000) < len(new)):
|
||||
new[int(t*1000)] = max(data[i], new[int(t*1000)])
|
||||
else:
|
||||
new[len(new)-1] = max(data[i], new[len(new)-1])
|
||||
|
||||
if(show):
|
||||
t = [j/1000 for j in range(len(new))]
|
||||
plt.plot(t, new)
|
||||
plt.xlabel("Time (e)")
|
||||
plt.ylabel("Amplitude")
|
||||
plt.grid()
|
||||
plt.show()
|
||||
|
||||
return new
|
||||
|
||||
def snap2(data, sample_rate, bpm, first_offset=0, div=4, show=False, adjust=False):
|
||||
"""
|
||||
data : list(int)
|
||||
sample_rate : int
|
||||
bpm = float
|
||||
"""
|
||||
|
||||
song_len = int(len(data)/sample_rate)
|
||||
|
||||
indexes = []
|
||||
app = True
|
||||
|
||||
reduced = [0 for i in range(song_len*1000)]
|
||||
new = [0 for i in range(song_len*1000)]
|
||||
|
||||
# build the reduced version
|
||||
for i in range(len(data)):
|
||||
x = int(i*1000/sample_rate)
|
||||
if(x < len(reduced)):
|
||||
reduced[x] = max(reduced[x], data[i])
|
||||
|
||||
|
||||
print("Build done")
|
||||
# snap
|
||||
k = 0
|
||||
current_t = first_offset
|
||||
|
||||
while(current_t < 0):
|
||||
k += 1
|
||||
current_t = first_offset + k*60/(bpm*div)
|
||||
|
||||
for j in range(len(new)):
|
||||
if(j/1000 > current_t):
|
||||
k += 1
|
||||
current_t = first_offset + k*60/(bpm*div)
|
||||
app = True
|
||||
|
||||
y = int(current_t*1000)
|
||||
if(y < len(new)):
|
||||
new[y] = max(new[y], reduced[j])
|
||||
|
||||
if(app):
|
||||
indexes.append(y)
|
||||
app = False
|
||||
|
||||
print("Snap done")
|
||||
|
||||
if(adjust):
|
||||
print("Len :", len(indexes))
|
||||
|
||||
new = adjust_timings(reduced, new, indexes)
|
||||
|
||||
|
||||
if(show):
|
||||
new2 = [0.9 if new[i] != 0 else 0 for i in range(len(new))]
|
||||
|
||||
t = [j/1000+first_offset for j in range(len(new))]
|
||||
beats_1 = [0 for j in range(len(new))]
|
||||
beats_2 = [0 for k in range(len(new))]
|
||||
beats_4 = [0 for l in range(len(new))]
|
||||
|
||||
k = 0
|
||||
current_t = first_offset
|
||||
|
||||
while(current_t < 0):
|
||||
k += 1
|
||||
current_t = first_offset + k*60/(bpm*div)
|
||||
|
||||
while(1000*current_t < len(new)):
|
||||
beats_4[int(1000*current_t)] = 0.9
|
||||
|
||||
if(k % 2 == 0):
|
||||
beats_2[int(1000*current_t)] = 0.92
|
||||
|
||||
if(k % 4 == 0):
|
||||
beats_1[int(1000*current_t)] = 0.94
|
||||
|
||||
k += 1
|
||||
current_t = first_offset + k*60/(bpm*div)
|
||||
|
||||
plt.plot(t, new2, "bo")
|
||||
plt.plot(t, beats_4, "r-")
|
||||
plt.plot(t, beats_2, "y-")
|
||||
plt.plot(t, beats_1, "g-")
|
||||
plt.xlabel("Time (s)")
|
||||
plt.ylabel("Amplitude")
|
||||
plt.grid()
|
||||
plt.show()
|
||||
|
||||
return new
|
||||
|
||||
def filter_peaks(data, sample_rate=44100, thr=1000):
|
||||
tdata = []
|
||||
times = []
|
||||
|
||||
for i in range(len(data)):
|
||||
if data[i] > thr:
|
||||
tdata.append(data[i])
|
||||
times.append(i/sample_rate)
|
||||
|
||||
return (tdata, times)
|
||||
'''
|
||||
times is in seconds
|
||||
'''
|
||||
|
||||
def get_spacing(data, sample_rate=44100, show=False, retrieve=False):
|
||||
tdata, times = filter_peaks(data, sample_rate=sample_rate)
|
||||
|
||||
absc = [i for i in range(len(times))]
|
||||
dt = [0]
|
||||
|
||||
for i in range(1, len(times)):
|
||||
dt.append(1000*(times[i]-times[i-1]))
|
||||
|
||||
if(show):
|
||||
plt.plot(absc, dt)
|
||||
plt.xlabel("x")
|
||||
plt.ylabel("T(peak x) - T(peak x-1) (ms)")
|
||||
plt.grid()
|
||||
plt.show()
|
||||
|
||||
if(retrieve):
|
||||
return dt
|
||||
|
||||
'''
|
||||
post-condition :
|
||||
- dt[i] = time(peak number i) - time(peak number i-1)
|
||||
- dt is in ms
|
||||
'''
|
||||
|
||||
def avg(data, i, j):
|
||||
res = 0
|
||||
for e in range(i, min(len(data), j)):
|
||||
res += data[e]
|
||||
return (res/(min(len(data), j) - i))
|
||||
|
||||
def snap3(data, sample_rate=44100, mintime=10, initial_plot=False, after_plot=False):
|
||||
'''
|
||||
explaination :
|
||||
1) get the time differences (cf get_spacing)
|
||||
2) for eack peak : 2 cases
|
||||
- if it's farther than mintime (in ms) :
|
||||
> calculate the weighted mean if all elements in temp_list
|
||||
> place a note at that mean
|
||||
> empty temp_list
|
||||
> push the current peak to temp_list
|
||||
- else :
|
||||
> push the current peak to temp_list
|
||||
'''
|
||||
data_peaks, peak_times = filter_peaks(data, sample_rate=sample_rate)
|
||||
time_diff = get_spacing(data, show=initial_plot, retrieve=True)
|
||||
|
||||
res_peaks = []
|
||||
res_times = []
|
||||
|
||||
segments = []
|
||||
seglen = []
|
||||
|
||||
current_left = 0
|
||||
|
||||
for i in range(len(peak_times)):
|
||||
if(time_diff[i] > mintime):
|
||||
segments.append([current_left, i])
|
||||
seglen.append(peak_times[i]-peak_times[current_left])
|
||||
res_peaks.append(avg(data_peaks, current_left, i))
|
||||
res_times.append(peak_times[i])
|
||||
current_left = i
|
||||
|
||||
for i in range(len(segments)):
|
||||
print(segments[i], ":", seglen[i])
|
||||
|
||||
if(after_plot):
|
||||
peakplot = []
|
||||
diffplot = []
|
||||
for x in range(len(peak_times)):
|
||||
peakplot.append(peak_times[x]-peak_times[x]/1000)
|
||||
peakplot.append(peak_times[x])
|
||||
peakplot.append(peak_times[x]+peak_times[x]/1000)
|
||||
diffplot.append(0)
|
||||
diffplot.append(time_diff[x])
|
||||
diffplot.append(0)
|
||||
|
||||
plt.plot(res_times, res_peaks, "ro", label="placed beats")
|
||||
plt.plot(peakplot, diffplot, label="derivatine of time")
|
||||
plt.xlabel("t (s)")
|
||||
plt.ylabel(".")
|
||||
plt.legend(loc="upper left")
|
||||
plt.grid()
|
||||
plt.show()
|
||||
|
||||
return (res_peaks, res_times)
|
||||
""" res_times is in seconds """
|
||||
|
||||
|
7
main.py
7
main.py
|
@ -3,18 +3,21 @@ import slider as sl
|
|||
from datetime import timedelta
|
||||
import place
|
||||
import sound_process
|
||||
import os
|
||||
import numpy as np
|
||||
|
||||
def main():
|
||||
filename = fd.askopenfilename()
|
||||
os.chdir(os.path.dirname(filename))
|
||||
beatmap = sl.Beatmap.from_path(filename)
|
||||
timing = beatmap.timing_points[0]
|
||||
bpm = timing.bpm
|
||||
offset = timing.offset
|
||||
offset = timing.offset.total_seconds() * 1000
|
||||
print(beatmap.audio_filename)
|
||||
|
||||
timings, amplitudes = sound_process.process_song(beatmap.audio_filename, bpm, offset=offset, n_iter_2=-1)
|
||||
amplitudes, timings, frequencies = sound_process.process_song(beatmap.audio_filename, bpm, offset0=offset, n_iter_2=-1)
|
||||
# NOTE : remove n_iter_2 to map the whole music
|
||||
timings = [timedelta(seconds=x) for x in timings]
|
||||
|
||||
beatmap._hit_objects = place.greedy(bpm, offset, timings, amplitudes)
|
||||
#beatmap._hit_objects = [sl.Slider(sl.Position(0, 0), timedelta(milliseconds=3), timedelta(milliseconds=130), 0, sl.curve.Linear([sl.Position(0, 0), sl.Position(100, 100)], 100), 100, 2, 1, 1, 1, timing.ms_per_beat, [], [],)]
|
||||
|
|
62
place.py
62
place.py
|
@ -12,23 +12,36 @@ def beatify(bpm:float, offset:int, time:timedelta) -> float:
|
|||
def debeatify(bpm:float, offset:int, beat:int) -> timedelta:
|
||||
return timedelta(milliseconds=(beat*60000/bpm) + offset)
|
||||
|
||||
def f(intensity): return np.pi/2 - np.arctan(2*intensity - 5)
|
||||
def f(intensity): return np.pi/2 - np.arctan(2*intensity) + np.pi/5
|
||||
#def f(intensity): return np.pi/2
|
||||
|
||||
def greedy(bpm:int, offset:int, timings:list, amplitudes:list):
|
||||
"""
|
||||
input: takes Alexandre's note selection / intensity data
|
||||
output: list of object type / position
|
||||
"""
|
||||
flow = 1
|
||||
notes = [sl.HitObject(0, timedelta(milliseconds=0), 0)] * len(timings)
|
||||
beats = [beatify(bpm, offset, timing) for timing in timings]
|
||||
new_combo = True
|
||||
flow = 0
|
||||
notes = [sl.HitObject(sl.Position(260, 188), timedelta(milliseconds=0), 0)] * len(timings)
|
||||
beats = [int(beatify(bpm, offset, timing)*4) for timing in timings]
|
||||
last_position = (260, 188)
|
||||
max_x, max_y, min_x, min_y = -np.inf, -np.inf, np.inf, np.inf
|
||||
for (delta, note_beat, intensity, i) in zip(timings, beats, amplitudes, range(len(timings))):
|
||||
try:
|
||||
duration = note_beat - beats[i + 1]
|
||||
if int(note_beat/32) % 2: #test si la mesure est impaire ou non
|
||||
new_combo = not (flow == 1)
|
||||
flow = 1
|
||||
else:
|
||||
new_combo = (flow == 1)
|
||||
flow = -1
|
||||
duration = abs(note_beat - beats[i + 1])
|
||||
print(duration)
|
||||
"""
|
||||
if duration in (QUARTER, HALF):
|
||||
notes[i] = sl.Circle(sl.Position(0, 0), delta, 0)
|
||||
notes[i] = sl.Circle(sl.Position(0, 0), delta, 0)
|
||||
"""
|
||||
"""
|
||||
elif duration % 2 == 0:
|
||||
rhythms.insert(0, f"slider {duration}")
|
||||
else:
|
||||
|
@ -36,18 +49,37 @@ def greedy(bpm:int, offset:int, timings:list, amplitudes:list):
|
|||
"""
|
||||
except IndexError:
|
||||
notes[i] = sl.Circle(sl.Position(0, 0), delta, 0)
|
||||
# TODO mettre à jour flow
|
||||
"""
|
||||
|
||||
if len(notes) > 2:
|
||||
angle = flow * f(rhythm.intensite)
|
||||
x1, y1 = notes[i-2].position
|
||||
x2, y2 = notes[i-1].position
|
||||
old_angle = np.arctan2((y1, y2), (x1, x2))
|
||||
x3 = x2 + (intensity * np.cos(angle + old_angle))
|
||||
y3 = y2 + (intensity * np.sin(angle + old_angle))
|
||||
if duration == QUARTER:
|
||||
x2, y2 = int(notes[i-1].position.x), int(notes[i-1].position.y)
|
||||
notes[i] = sl.Circle(sl.Position(x2, y2), delta, 0)
|
||||
|
||||
else:
|
||||
angle = flow * f(intensity/100)
|
||||
x1, y1 = int(notes[i-2].position.x), int(notes[i-2].position.y)
|
||||
x2, y2 = int(notes[i-1].position.x), int(notes[i-1].position.y)
|
||||
old_angle = np.arctan2([y2-y1], [x2-x1])
|
||||
x3 = x2 + ((duration + new_combo*4)* np.cos(angle + old_angle))
|
||||
y3 = y2 + ((duration + new_combo*4) * np.sin(angle + old_angle))
|
||||
notes[i] = sl.Circle(sl.Position(int(x3[0]), int(y3[0])), delta, 0)
|
||||
else:
|
||||
pass
|
||||
"""
|
||||
notes[i] = sl.Circle(sl.Position(260, 188), delta, 0)
|
||||
if notes[i].position.x > max_x:
|
||||
max_x = notes[i].position.x
|
||||
elif notes[i].position.x < min_x:
|
||||
min_x = notes[i].position.x
|
||||
if notes[i].position.y > max_y:
|
||||
max_y = notes[i].position.y
|
||||
elif notes[i].position.y < min_y:
|
||||
min_y = notes[i].position.y
|
||||
|
||||
notes[i].new_combo = new_combo
|
||||
factor_x = 1/(max_x - min_x)
|
||||
factor_y = 1/(max_y - min_y)
|
||||
for note in notes:
|
||||
note.position = sl.Position((note.position.x-min_x)*factor_x*512, (note.position.y-min_y)*factor_y*384)
|
||||
|
||||
return notes
|
||||
|
||||
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
slider
|
||||
audioread==3.0.1
|
||||
certifi==2024.2.2
|
||||
cffi==1.16.0
|
||||
|
|
|
@ -0,0 +1,145 @@
|
|||
import numpy as np
|
||||
import scipy as scp
|
||||
import heapq
|
||||
|
||||
def retrieve_dominant_freqs(song_name, offset, songlen, segsize):
|
||||
# returns a list with peak frequencies alongside the sample rate
|
||||
# /!\ song_name is specified to be a list, NOT a list of couples (aka song is mono)
|
||||
# segsize is in seconds
|
||||
|
||||
# remove high_pitched/low-pitched frequencies
|
||||
minfreq = 110
|
||||
maxfreq = 440*8
|
||||
|
||||
# cutting the song to only keep the one we're interested in
|
||||
subprocess.run(["ffmpeg", "-ss", str(offset), "-t", str(songlen+offset), "-i", song_name, "crop.wav"], shell=False)
|
||||
|
||||
# extracting data from cropped song
|
||||
sample_rate, song_data = wavfile.read("crop.wav")
|
||||
blit = int(sample_rate*segsize) # Te
|
||||
|
||||
# remove the copy of the song
|
||||
subprocess.run(["rm", "crop.wav"], shell=False)
|
||||
|
||||
# calculate the frequencies associated to the FFTs
|
||||
pfreq = scipy.fft.rfftfreq(blit, 1/sample_rate)
|
||||
|
||||
# left boundary of segment to crop
|
||||
current_time = offset
|
||||
|
||||
# list of FFTs
|
||||
fft_list = []
|
||||
|
||||
# number of samples
|
||||
k = 0
|
||||
|
||||
while(current_time <= songlen+offset):
|
||||
# index corresponding to left boundary
|
||||
left_id = int(current_time*sample_rate)
|
||||
|
||||
# index corresponding to right boundary
|
||||
right_id = int((current_time+segsize)*sample_rate)
|
||||
|
||||
# calculate the fft, append it to fft_list
|
||||
pff = scp.fft.rfft(global_data[left:right])
|
||||
fft_list.append(pff)
|
||||
|
||||
# just to avoid what causes 0.1 + 0.1 == 0.2 to be False
|
||||
k += 1
|
||||
current_time = offset + k*segsize
|
||||
|
||||
# spacing between samples (time)
|
||||
fe = segsize/sample_rate
|
||||
|
||||
# list that will contain the maximum frequencies/amplitudes for all FFTs
|
||||
maxlist = []
|
||||
maxamps = []
|
||||
|
||||
# find all maximums
|
||||
for i in range(len(fft_list)):
|
||||
current_max = -1
|
||||
current_fmax = 0
|
||||
|
||||
for j in range(len(fft_list[i])):
|
||||
if(pfreq[j] < maxfreq & pfreq[j] >= minfreq & np.abs(fft_list[i][j]) > current_max):
|
||||
current_max = np.abs(fft_list[i][j])
|
||||
current_fmax = pfreq[j]
|
||||
|
||||
maxlist.append(current_fmax)
|
||||
maxamps.append(current_max)
|
||||
|
||||
# gg
|
||||
# maxlist[i] corresponds to time (offset + i*segsize)
|
||||
return (maxlist, maxamps, segsize)
|
||||
|
||||
def retrieve_dominant_amps(song_name, offset, songlen, segsize, percent):
|
||||
# returns a list with the percent% peak amplitudes alongside the sample rate
|
||||
# /!\ song_name is specified to be a list, NOT a list of couples (aka song is mono)
|
||||
# segsize is in seconds
|
||||
|
||||
# cutting the song to only keep the one we're interested in
|
||||
subprocess.run(["ffmpeg", "-ss", str(offset), "-t", str(songlen+offset), "-i", song_name, "crop.wav"], shell=False)
|
||||
|
||||
# extracting data from cropped song
|
||||
sample_rate, song_data = wavfile.read("crop.wav")
|
||||
blit = int(sample_rate*segsize) # Te
|
||||
|
||||
# remove the copy of the song
|
||||
subprocess.run(["rm", "crop.wav"], shell=False)
|
||||
|
||||
# which notes will be voided
|
||||
is_locked = [False for i in range(len(song_data))]
|
||||
x = int((len(song_data)*threshold)//100)
|
||||
|
||||
print("Retreiving the", int(x), "/", len(song_data), "highest values")
|
||||
elements = heapq.nlargest(int(x), enumerate(song_data), key=lambda x: x[1])
|
||||
#returns a list of couples [id, value]
|
||||
|
||||
for idx in range(len(elements)):
|
||||
is_locked[elements[idx][0]] = True
|
||||
|
||||
for r in range(len(song_data)):
|
||||
if(is_locked[r] == False):
|
||||
song_data[r] = 0
|
||||
|
||||
# now we need to reduce song_data so that it matches the length of the previous function's return
|
||||
res = []
|
||||
k = 0
|
||||
current_time = offset
|
||||
|
||||
while(current_time <= songlen+offset):
|
||||
# index corresponding to left boundary
|
||||
left_id = int(current_time*sample_rate)
|
||||
|
||||
# index corresponding to right boundary
|
||||
right_id = int((current_time+segsize)*sample_rate)
|
||||
|
||||
# merge the segment into one value
|
||||
cmax = 0
|
||||
for i in range(left_id, right_id):
|
||||
if(i < len(song_data) & cmax < song_data[i]):
|
||||
cmax = song_data[i]
|
||||
|
||||
res.append(cmax)
|
||||
|
||||
k += 1
|
||||
current_time = current_time + k*segsize
|
||||
|
||||
# gg
|
||||
# res[i] corresponds to time (offset + i*segsize)
|
||||
return res
|
||||
|
||||
print("done")
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
372
sound_process.py
372
sound_process.py
|
@ -15,7 +15,7 @@ from pathlib import Path
|
|||
from time import sleep
|
||||
from datetime import timedelta
|
||||
|
||||
WORKING_SAMPLE_RATE = 1000
|
||||
import debug
|
||||
|
||||
print("Starting...\n")
|
||||
|
||||
|
@ -30,14 +30,12 @@ def filter_n_percent_serial(song_name, offset, n_iter, step, threshold):
|
|||
filter data associated with song_name to keep only the highest threshold% values
|
||||
"""
|
||||
|
||||
offset = offset.total_seconds()
|
||||
|
||||
subprocess.run(["ffmpeg", "-ss", str(offset), "-t", str(offset+step*n_iter), "-i", song_name, "crop.wav"])
|
||||
subprocess.run(["ffmpeg", "-ss", str(offset), "-t", str(offset+step*n_iter), "-i", song_name, "crop.wav"], shell=False)
|
||||
|
||||
sample_rate, global_data = wavfile.read('crop.wav')
|
||||
|
||||
subprocess.run(["clear"])
|
||||
subprocess.run(["rm", "crop.wav"])
|
||||
subprocess.run(["clear"], shell=False)
|
||||
subprocess.run(["rm", "crop.wav"], shell=False)
|
||||
|
||||
for i in range(n_iter):
|
||||
print(i, "/", n_iter)
|
||||
|
@ -94,46 +92,38 @@ def round_t(id, sample_rate, bpm, div, offset, k0):
|
|||
def compress(Zxx):
|
||||
res = []
|
||||
|
||||
def get_freq(song_name, offset, step, songlen, data, display=False):
|
||||
def get_freq(song_name, times, width=1000, display=False):
|
||||
"""
|
||||
for a given list of amplitudes, returns the corresponding peak frequencies
|
||||
for a given list of times (in seconds), returns the corresponding peak frequencies
|
||||
"""
|
||||
offset = offset.total_seconds()
|
||||
fft_list = []
|
||||
times = []
|
||||
current_time = offset
|
||||
k = 0
|
||||
subprocess.run(["ffmpeg", "-ss", str(offset), "-t", str(offset+songlen),"-i",song_name, "crop.wav"])
|
||||
|
||||
sample_rate, global_data = wavfile.read("crop.wav")
|
||||
#blit = int(len(global_data) / len(data))
|
||||
blit = int(sample_rate*step)
|
||||
subprocess.run(["ffmpeg", "-ss", str(0), "-t", str(max(np.array(times))), "-i", song_name, "crop.wav"], shell=False)
|
||||
|
||||
subprocess.run(["clear"])
|
||||
subprocess.run(["rm", "crop.wav"])
|
||||
sample_rate, global_data = wavfile.read(song_name)
|
||||
#blit = int(sample_rate*step)
|
||||
|
||||
pfreq = scipy.fft.rfftfreq(blit, 1/sample_rate)
|
||||
subprocess.run(["clear"], shell=False)
|
||||
subprocess.run(["rm", "crop.wav"], shell=False)
|
||||
|
||||
print("len : ", len(global_data))
|
||||
print("len : ", len(data))
|
||||
pfreq = scipy.fft.rfftfreq(2*width, 1/sample_rate)
|
||||
|
||||
frequencies = [0 for s in range(len(data))]
|
||||
frequencies = [0 for s in range(len(times))]
|
||||
print(len(pfreq))
|
||||
|
||||
for s in range(len(data)):
|
||||
if(data[s] != 0):
|
||||
pff = scipy.fft.rfft(global_data[int(s*len(global_data)/len(data)):int(WORKING_SAMPLE_RATE*step+int(s*len(global_data)/len(data)))])
|
||||
for s in range(len(times)):
|
||||
left = max(0, int(times[s]*44100)-width)
|
||||
right = min(len(global_data), int(times[s]*44100)+width)
|
||||
pff = scipy.fft.rfft(global_data[left:right])
|
||||
|
||||
mx = max(np.abs(pff))
|
||||
for id in range(len(pff)):
|
||||
if frequencies[s] == 0 and np.abs(pff[id]) == mx:
|
||||
frequencies[s] = pfreq[id]
|
||||
#print(len(pff), len(pfreq))
|
||||
|
||||
elif s != 0:
|
||||
frequencies[s] = 0
|
||||
mx = max(np.abs(pff))
|
||||
for id in range(len(pff)):
|
||||
if frequencies[s] == 0 and np.abs(pff[id]) == mx:
|
||||
frequencies[s] = pfreq[id]
|
||||
|
||||
if(display):
|
||||
plt.plot([offset+t/1000 for t in range(len(data))], frequencies)
|
||||
plt.plot(times, frequencies)
|
||||
plt.grid()
|
||||
plt.xlabel("Time (s)")
|
||||
plt.ylabel("Dominant frequency (Hz)")
|
||||
|
@ -171,22 +161,20 @@ def void_freq(song_name, offset, songlen, increment, minfreq, maxfreq, upperthr,
|
|||
write : bool (should be set to True)
|
||||
output_file : technical
|
||||
"""
|
||||
offset = offset.total_seconds()
|
||||
|
||||
fft_list = []
|
||||
times = []
|
||||
current_time = offset
|
||||
k = 0
|
||||
|
||||
subprocess.run(["ffmpeg", "-ss", str(offset), "-t", str(songlen+offset), "-i", song_name, "crop.wav"])
|
||||
subprocess.run(["ffmpeg", "-ss", str(offset), "-t", str(songlen+offset), "-i", song_name, "crop.wav"], shell=False)
|
||||
|
||||
sample_rate, raw_global_data = wavfile.read("crop.wav")
|
||||
blit = int(sample_rate*increment)
|
||||
|
||||
global_data = [0 for i in range(len(raw_global_data))]
|
||||
|
||||
subprocess.run(["clear"])
|
||||
subprocess.run(["rm", "crop.wav"])
|
||||
#subprocess.run(["clear"])
|
||||
subprocess.run(["rm", "crop.wav"], shell=False)
|
||||
|
||||
a = 0
|
||||
|
||||
|
@ -263,7 +251,7 @@ def void_freq(song_name, offset, songlen, increment, minfreq, maxfreq, upperthr,
|
|||
res[i] = np.int16(32767*res[i]/mx)
|
||||
|
||||
res = np.array(res)
|
||||
wavfile.write(output_file, WORKING_SAMPLE_RATE, res)
|
||||
wavfile.write(output_file, 44100, res)
|
||||
|
||||
#plt.plot(np.abs(pfreq[:len(fft_list[0])]), np.abs(fft_list[0]))
|
||||
#plt.grid()
|
||||
|
@ -271,29 +259,11 @@ def void_freq(song_name, offset, songlen, increment, minfreq, maxfreq, upperthr,
|
|||
|
||||
print("Done")
|
||||
|
||||
def get_tpts(data, sample_rate, thr):
|
||||
res = []
|
||||
for i in range(len(data)):
|
||||
if(data[i] > thr):
|
||||
res.append(i/sample_rate)
|
||||
|
||||
for i in res:
|
||||
print(i)
|
||||
return res
|
||||
|
||||
def test_sample(timelist):
|
||||
for i in range(1,len(timelist)):
|
||||
#os.system('play -n synth %s sin %s' % (0.05, 440))
|
||||
for k in range(random.randint(1, 10)):
|
||||
print("E", end="")
|
||||
print("F")
|
||||
sleep(timelist[i]-timelist[i-1])
|
||||
|
||||
def convert_tuple(datares, freq):
|
||||
def convert_tuple(data, times):
|
||||
"""
|
||||
Takes datares and converts it to a list of tuples (amplitude, datetimes)
|
||||
Takes data and converts it to a list of tuples (amplitude, datetimes)
|
||||
"""
|
||||
return [(timedelta(milliseconds=i), datares[i], freq[i]) for i in range(len(datares)) if datares[i] > 0]
|
||||
return [(times[i], data[i]) for i in range(len(data))]
|
||||
|
||||
def get_songlen(filename):
|
||||
"""
|
||||
|
@ -304,201 +274,21 @@ def get_songlen(filename):
|
|||
|
||||
return (len(global_data)/sample_rate)
|
||||
|
||||
def snap(data, sample_rate, bpm, divisor, show=False):
|
||||
# adjust time amplitudes to match the given BPM
|
||||
new = [0 for x in range(int(1000*len(data)/sample_rate))] # 1pt per millisecond
|
||||
print("old =", len(data))
|
||||
print("len =", 1000*len(data)/sample_rate)
|
||||
k = 0
|
||||
t = 0
|
||||
percent = 0
|
||||
for i in range(len(data)):
|
||||
|
||||
while(t < i/sample_rate):
|
||||
t = k/(bpm*divisor)
|
||||
k += 60
|
||||
'''
|
||||
if(np.abs(i/sample_rate - k/(bpm*divisor)) > np.abs(i/sample_rate - (k-60)/(bpm*divisor))):
|
||||
k -= 60
|
||||
t = k/(bpm*divisor)'''
|
||||
|
||||
if(i%(len(data)//100) == 0):
|
||||
print(percent, "%")
|
||||
percent += 1
|
||||
|
||||
if(int(t*1000) < len(new)):
|
||||
new[int(t*1000)] = max(data[i], new[int(t*1000)])
|
||||
else:
|
||||
new[len(new)-1] = max(data[i], new[len(new)-1])
|
||||
|
||||
if(show):
|
||||
t = [j/1000 for j in range(len(new))]
|
||||
plt.plot(t, new)
|
||||
plt.xlabel("Time (e)")
|
||||
plt.ylabel("Amplitude")
|
||||
plt.grid()
|
||||
plt.show()
|
||||
|
||||
return new
|
||||
|
||||
def adjust_timings(raw_data, snapped_data, indexes, thr=100):
|
||||
def convert_to_wav(song_name:str, output_file="audio.wav") -> str:
|
||||
"""
|
||||
adjusts weirdly snapped notes
|
||||
"""
|
||||
current = 0
|
||||
|
||||
while(current < len(indexes)):
|
||||
|
||||
if(current < len(indexes) - 3 and current % 2 == 1): # on a 1/4 beat
|
||||
if(snapped_data[indexes[current]] > thr and snapped_data[indexes[current+1]] > thr and snapped_data[indexes[current+2]] > thr and snapped_data[indexes[current+3]] <= thr):
|
||||
# -XXX_
|
||||
snapped_data[indexes[current+3]] = snapped_data[indexes[current+2]]
|
||||
snapped_data[indexes[current+2]] = 0
|
||||
|
||||
if(current > 0 and current < len(indexes) - 1 and current % 2 == 1):
|
||||
if(snapped_data[indexes[current]] > thr and (snapped_data[indexes[current+1]] < thr or snapped_data[indexes[current-1]] < thr)):
|
||||
#_X_
|
||||
'''if(snapped_data[indexes[current-1]] < thr and raw_data[indexes[current-1]] > raw_data[indexes[current+1]]):
|
||||
snapped_data[indexes[current-1]] = snapped_data[indexes[current]]
|
||||
else:
|
||||
snapped_data[indexes[current+1]] = snapped_data[indexes[current]]'''
|
||||
|
||||
snapped_data[indexes[current]] = 0
|
||||
|
||||
current += 1
|
||||
|
||||
print("Resnap done")
|
||||
return snapped_data
|
||||
|
||||
def snap2(data, sample_rate, bpm, first_offset=0, div=4, show=False, adjust=False):
|
||||
"""
|
||||
data : list(int)
|
||||
sample_rate : int
|
||||
bpm = float
|
||||
"""
|
||||
|
||||
song_len = int(len(data)/sample_rate)
|
||||
|
||||
indexes = []
|
||||
app = True
|
||||
|
||||
reduced = [0 for i in range(song_len*1000)]
|
||||
new = [0 for i in range(song_len*1000)]
|
||||
|
||||
# build the reduced version
|
||||
for i in range(len(data)):
|
||||
x = int(i*1000/sample_rate)
|
||||
if(x < len(reduced)):
|
||||
reduced[x] = max(reduced[x], data[i])
|
||||
|
||||
|
||||
print("Build done")
|
||||
# snap
|
||||
k = 0
|
||||
current_t = first_offset
|
||||
|
||||
while(current_t < 0):
|
||||
k += 1
|
||||
current_t = first_offset + k*60/(bpm*div)
|
||||
|
||||
for j in range(len(new)):
|
||||
if(j/1000 > current_t):
|
||||
k += 1
|
||||
current_t = first_offset + k*60/(bpm*div)
|
||||
app = True
|
||||
|
||||
y = int(current_t*1000)
|
||||
if(y < len(new)):
|
||||
new[y] = max(new[y], reduced[j])
|
||||
|
||||
if(app):
|
||||
indexes.append(y)
|
||||
app = False
|
||||
|
||||
print("Snap done")
|
||||
|
||||
if(adjust):
|
||||
print("Len :", len(indexes))
|
||||
|
||||
new = adjust_timings(reduced, new, indexes)
|
||||
|
||||
|
||||
if(show):
|
||||
|
||||
t = [j/1000+first_offset for j in range(len(new))]
|
||||
scatter_t = [t[i] for i in range(len(new)) if new[i] != 0]
|
||||
scatter_chosen_rhythm = [0.9 for i in range(len(new)) if new[i] != 0 ]
|
||||
beats_1 = [0 for j in range(len(new))]
|
||||
beats_2 = [0 for k in range(len(new))]
|
||||
beats_4 = [0 for l in range(len(new))]
|
||||
|
||||
k = 0
|
||||
current_t = first_offset
|
||||
|
||||
while(current_t < 0):
|
||||
k += 1
|
||||
current_t = first_offset + k*60/(bpm*div)
|
||||
|
||||
while(1000*current_t < len(new)):
|
||||
beats_4[int(1000*current_t)] = 0.9
|
||||
|
||||
if(k % 2 == 0):
|
||||
beats_2[int(1000*current_t)] = 0.902
|
||||
|
||||
if(k % 4 == 0):
|
||||
beats_1[int(1000*current_t)] = 0.91
|
||||
|
||||
if(k % 16 == 0):
|
||||
beats_1[int(1000*current_t)] = 0.915
|
||||
|
||||
k += 1
|
||||
current_t = first_offset + k*60/(bpm*div)
|
||||
|
||||
points = plt.scatter(scatter_t, scatter_chosen_rhythm, marker="o", label="Detected Rhythm")
|
||||
div1_plot, = plt.plot(t, beats_4, "b-", label="1/4")
|
||||
div2_plot, = plt.plot(t, beats_2, "r-", label="1/2")
|
||||
div3_plot, = plt.plot(t, beats_1, "black", label="1/1")
|
||||
plt.xlabel("Time (s)")
|
||||
#plt.ylabel("Amplitude")
|
||||
plt.legend(handles=[points, div1_plot, div2_plot, div3_plot])
|
||||
plt.grid()
|
||||
plt.show()
|
||||
|
||||
return new
|
||||
|
||||
def convert_song(song_name:str, output_file="audio.wav") -> str:
|
||||
"""
|
||||
Converts the song to .wav AND lower its sample rate to 1000.
|
||||
Converts the song to .wav, only if it's not already in wave format.
|
||||
Currently relies on file extension.
|
||||
Returns: the song_name that should be used afterwards.
|
||||
"""
|
||||
subprocess.run(["ffmpeg", "-y", "-i", song_name, "-ar", "1000", output_file])
|
||||
return output_file
|
||||
extension = Path(song_name).suffix
|
||||
match extension:
|
||||
case ".mp3" | ".ogg":
|
||||
print("Converting to .wav...")
|
||||
subprocess.run(["ffmpeg", "-y", "-i", song_name, output_file], shell=False)
|
||||
return output_file
|
||||
return song_name
|
||||
|
||||
def quantify(time: timedelta, bpm, offset, snapping):
|
||||
"""
|
||||
Input: timedelta, bpm, offset, and snapping divisor (2 for 1/2, etc...)
|
||||
Returns a timedelta that is properly timed to the map.
|
||||
"""
|
||||
offset_ms = offset.total_seconds() / 1000
|
||||
time_ms = time.total_seconds() * 1000
|
||||
time_spacing = (60000/bpm)/snapping
|
||||
beats_away = round((time_ms - offset_ms)/time_spacing)
|
||||
new_time = timedelta(milliseconds=time_spacing*beats_away + offset_ms)
|
||||
return new_time
|
||||
|
||||
def quantify_all(amplitudes_ugly, bpm, offset_ms, divisor):
|
||||
n = len(amplitudes_ugly)
|
||||
covered = [False] * n
|
||||
times = []
|
||||
amplitudes = []
|
||||
for i in range(n):
|
||||
if amplitudes_ugly[i] != 0 and not covered[i]:
|
||||
times.append(quantify(timedelta(milliseconds=i), bpm, offset_ms, divisor))
|
||||
amplitudes.append(amplitudes_ugly[i])
|
||||
covered[i] = True
|
||||
return times, amplitudes
|
||||
|
||||
def process_song(filename, bpm, offset=timedelta(milliseconds=0), div_len_factor=1, n_iter_2=-1, threshold=0.5, divisor=4):
|
||||
def process_song(filename, bpm, offset0=0, div_len_factor=1, n_iter_2=-1, threshold=0.5, divisor=4):
|
||||
"""
|
||||
filename : string (name of the song)
|
||||
offset : int [+] (song mapping will start from this time in seconds, default is 0)
|
||||
|
@ -509,7 +299,9 @@ def process_song(filename, bpm, offset=timedelta(milliseconds=0), div_len_factor
|
|||
divisor : int [+] (beat divisor used to snap the notes, default is 4)
|
||||
"""
|
||||
|
||||
filename = convert_song(filename)
|
||||
filename = convert_to_wav(filename)
|
||||
|
||||
offset = offset0/1000
|
||||
|
||||
div_len = div_len_factor*60/bpm-0.01
|
||||
|
||||
|
@ -517,22 +309,33 @@ def process_song(filename, bpm, offset=timedelta(milliseconds=0), div_len_factor
|
|||
song_len = get_songlen(filename)
|
||||
|
||||
if(n_iter == -1):
|
||||
n_iter = floor((song_len-offset.total_seconds())/div_len)-1
|
||||
n_iter = int((song_len-offset/1000)/div_len)-1
|
||||
|
||||
filtered_name = f"{filename}_trimmed.wav"
|
||||
|
||||
void_freq(filename, offset, min(song_len, offset.total_seconds()+div_len*(n_iter+1)+0.01), 4*60/bpm, minfreq=0, maxfreq=220, upperthr=5000, ampthr=60, ampfreq = 1200, ampval = 5.0, leniency = 0.005, write=True, linear=False, output_file=filtered_name)
|
||||
#void_freq(filename, offset, offset+div_len*(n_iter+1)+0.01, 4*60/bpm, minfreq=0, maxfreq=330, upperthr=2500, ampthr=60, ampfreq = 1200, ampval = 1/2000, leniency = 0.0, write=True, linear=True, output_file=filtered_name)
|
||||
amplitudes_ugly = filter_n_percent_serial(filtered_name, offset, n_iter, div_len, threshold)
|
||||
#datares = snap(datares, WORKING_SAMPLE_RATE, bpm, 4, True)
|
||||
times, amplitudes = quantify_all(amplitudes_ugly, bpm, offset, divisor)
|
||||
#frequencies = get_freq(filtered_name, offset, div_len, div_len*n_iter, datares, True)
|
||||
void_freq(filename, offset, min(song_len, offset+div_len*(n_iter+1)+0.01), 4*60/bpm, minfreq=0, maxfreq=220, upperthr=5000, ampthr=60, ampfreq = 1200, ampval = 5.0, leniency = 0.005, write=True, linear=False, output_file=filtered_name)
|
||||
|
||||
datares = filter_n_percent_serial(filtered_name, offset, n_iter, div_len, threshold)
|
||||
|
||||
#snapped_data = amplitude
|
||||
#times in ms
|
||||
(snapped_data, times) = debug.snap3(datares, mintime=50, initial_plot=True, after_plot=True)
|
||||
|
||||
#frequencies=get_freq(filtered_name, offset, div_len, div_len*n_iter, snapped_data, True)
|
||||
frequencies = get_freq(filtered_name, times, display=True)
|
||||
|
||||
Path(f"{filename}_trimmed.wav").unlink()
|
||||
#return convert_tuple(datares, frequencies)
|
||||
return times, amplitudes
|
||||
return snapped_data, times, frequencies
|
||||
|
||||
'''
|
||||
datares = debug.snap2(datares, 44100, bpm, first_offset=offset, div=divisor, show=True, adjust=True)
|
||||
frequencies = get_freq(filtered_name, offset, div_len, div_len*n_iter, datares, True)
|
||||
Path(f"{filename}_trimmed.wav").unlink()
|
||||
return convert_tuple(datares, frequencies)
|
||||
'''
|
||||
|
||||
def main():
|
||||
data = process_song("tetris_4.wav", 160, n_iter_2=48, threshold=100)
|
||||
aa, bb, cc = process_song("tetris_4.wav", 160, n_iter_2=48)
|
||||
#print(data)
|
||||
print("Program finished with return 0")
|
||||
|
||||
|
@ -587,7 +390,7 @@ if(False):
|
|||
#t, f, Zxx = fct("deltamax.wav", 9.992, 0.032, 20, 3000, False)
|
||||
#t, f, Zxx = fct("da^9.wav", 8.463, 0.032, 20, 5000, False)
|
||||
t, f, Zxx = fct("13. Cosmic Mind.wav", 0, 0.032, 20, 5000, False)
|
||||
#t, f, Zxx = fct("Furioso Melodia WORKING_SAMPLE_RATE.wav", 4, 0.032, 8, 3000, False)
|
||||
#t, f, Zxx = fct("Furioso Melodia 44100.wav", 4, 0.032, 8, 3000, False)
|
||||
#t, f, Zxx = fct("changing.wav", 0, 0.05, 3.9, 5000, False)
|
||||
#fct("worlds_end_3.wav", 75, (60/178)/4, 75+2, 2500)
|
||||
|
||||
|
@ -598,7 +401,7 @@ if(False):
|
|||
(t, data) = peaks("worlds_end_3.wav", 74.582, 6, False, 0.9)
|
||||
#(t, data) = peaks("da^9.wav", 8.463, 301.924 - 8.463, False, 0.95)
|
||||
#(t, data) = peaks("deltamax.wav", 8.463, 30101.924 - 8.463, False, 0.92)
|
||||
da = find_bpm(t, WORKING_SAMPLE_RATE, data, 100, 200, 1, 10)
|
||||
da = find_bpm(t, 44100, data, 100, 200, 1, 10)
|
||||
print("BPM data is", da)'''
|
||||
|
||||
#data = [-1 for i in range(int(x))]
|
||||
|
@ -651,13 +454,13 @@ def fct(song_name, offset, increment, songlen, maxfreq, display):
|
|||
current_time = offset
|
||||
k = 0
|
||||
while(current_time <= songlen):
|
||||
subprocess.run(["ffmpeg", "-ss", str(current_time), "-t", str(increment), "-i", song_name, "crop.wav"])
|
||||
subprocess.run(["ffmpeg", "-ss", str(current_time), "-t", str(increment), "-i", song_name, "crop.wav"], shell=False)
|
||||
|
||||
sample_rate, audio_data = wavfile.read('crop.wav')
|
||||
size = audio_data.size
|
||||
|
||||
#subprocess.run(["clear"])
|
||||
subprocess.run(["rm", "crop.wav"])
|
||||
subprocess.run(["rm", "crop.wav"], shell=False)
|
||||
|
||||
# do stuff here
|
||||
#f, t, Zxx = signal.stft(audio_data, sample_rate, nperseg=1000)
|
||||
|
@ -800,16 +603,15 @@ def extract_peaks_v2(song_data, sample_rate, offset, display, threshold, seglen)
|
|||
return (t, song_data)
|
||||
|
||||
def peaks(song_name, offset, length, display, thr):
|
||||
offset = offset.total_seconds()
|
||||
subprocess.run(["ffmpeg", "-ss", str(offset), "-t", str(length), "-i", song_name, "crop.wav"])
|
||||
subprocess.run(["ffmpeg", "-ss", str(offset), "-t", str(length), "-i", song_name, "crop.wav"], shell=False)
|
||||
|
||||
sample_rate, audio_data = wavfile.read('crop.wav')
|
||||
|
||||
subprocess.run(["clear"])
|
||||
subprocess.run(["rm", "crop.wav"])
|
||||
#subprocess.run(["clear"])
|
||||
subprocess.run(["rm", "crop.wav"], shell=False)
|
||||
|
||||
#return extract_peaks(audio_data, sample_rate, offset, display, thr)
|
||||
return extract_peaks_v2(audio_data, sample_rate, offset, display, thr, WORKING_SAMPLE_RATE*2)
|
||||
return extract_peaks_v2(audio_data, sample_rate, offset, display, thr, 44100*2)
|
||||
|
||||
def find_bpm(sample_rate, data, minbpm, maxbpm, step, width):
|
||||
optimal = minbpm
|
||||
|
@ -1011,17 +813,15 @@ def filter_n_percent(song_name, offset, length, threshold, reduce, show):
|
|||
# threshold is in ]0, 100]
|
||||
# filter data associated with song_name to keep only the highest threshold% values
|
||||
|
||||
offset = offset.total_seconds()
|
||||
|
||||
subprocess.run(["ffmpeg", "-ss", str(offset), "-t", str(length), "-i", song_name, "crop.wav"])
|
||||
subprocess.run(["ffmpeg", "-ss", str(offset), "-t", str(length), "-i", song_name, "crop.wav"], shell=False)
|
||||
|
||||
sample_rate, song_data = wavfile.read('crop.wav')
|
||||
|
||||
subprocess.run(["clear"])
|
||||
subprocess.run(["rm", "crop.wav"])
|
||||
subprocess.run(["clear"], shell=False)
|
||||
subprocess.run(["rm", "crop.wav"], shell=False)
|
||||
|
||||
if(reduce):
|
||||
(song_data,e) = to_ms(song_data, WORKING_SAMPLE_RATE, 1)
|
||||
(song_data,e) = to_ms(song_data, 44100, 1)
|
||||
sample_rate = 1000
|
||||
|
||||
mx = max(song_data)
|
||||
|
@ -1051,4 +851,22 @@ def filter_n_percent(song_name, offset, length, threshold, reduce, show):
|
|||
plt.show()
|
||||
|
||||
return song_data
|
||||
|
||||
def get_tpts(data, sample_rate, thr):
|
||||
res = []
|
||||
for i in range(len(data)):
|
||||
if(data[i] > thr):
|
||||
res.append(i/sample_rate)
|
||||
|
||||
for i in res:
|
||||
print(i)
|
||||
return res
|
||||
|
||||
def test_sample(timelist):
|
||||
for i in range(1,len(timelist)):
|
||||
#os.system('play -n synth %s sin %s' % (0.05, 440))
|
||||
for k in range(random.randint(1, 10)):
|
||||
print("E", end="")
|
||||
print("F")
|
||||
sleep(timelist[i]-timelist[i-1])
|
||||
'''
|
||||
|
|
Loading…
Reference in New Issue