Compare commits
No commits in common. "fc719fac68d71607854edba272258b17e2f43981" and "31639c850e5fb4f11f47470442ff28215fff73c4" have entirely different histories.
fc719fac68
...
31639c850e
|
@ -8,9 +8,10 @@ def compare_plot():
|
|||
beatmap = sl.Beatmap.from_path(filename)
|
||||
timing = beatmap.timing_points[0]
|
||||
bpm = timing.bpm
|
||||
offset = timing.offset
|
||||
timings, amplitudes = sound_process.process_song(beatmap.audio_filename, bpm, offset=offset, n_iter_2=-1)
|
||||
timings = [x.total_seconds() for x in timings]
|
||||
offset = timing.offset.total_seconds() * 1000
|
||||
data = sound_process.process_song(beatmap.audio_filename, bpm, offset0=offset, n_iter_2=48, divisor=4)
|
||||
|
||||
timings, amplitudes, freqs = [x[0].total_seconds() for x in data], [x[1] for x in data], [x[2] for x in data]
|
||||
|
||||
original_times = [x.time.total_seconds() for x in beatmap.hit_objects(spinners=False) if x.time.total_seconds() <= timings[len(timings) - 1]]
|
||||
|
||||
|
|
6
main.py
6
main.py
|
@ -10,13 +10,15 @@ def main():
|
|||
beatmap = sl.Beatmap.from_path(filename)
|
||||
timing = beatmap.timing_points[0]
|
||||
bpm = timing.bpm
|
||||
offset = timing.offset
|
||||
offset = timing.offset.total_seconds() * 1000
|
||||
print(beatmap.audio_filename)
|
||||
|
||||
timings, amplitudes = sound_process.process_song(beatmap.audio_filename, bpm, offset=offset, n_iter_2=-1)
|
||||
data = sound_process.process_song(beatmap.audio_filename, int(bpm), offset0=offset, n_iter_2=-1)
|
||||
# NOTE : remove n_iter_2 to map the whole music
|
||||
timings, amplitudes, freqs = [x[0] for x in data], [x[1] for x in data], [x[2] for x in data]
|
||||
|
||||
beatmap._hit_objects = place.greedy(bpm, offset, timings, amplitudes)
|
||||
beatmap.display_name = "TIPE's Extra"
|
||||
#beatmap._hit_objects = [sl.Slider(sl.Position(0, 0), timedelta(milliseconds=3), timedelta(milliseconds=130), 0, sl.curve.Linear([sl.Position(0, 0), sl.Position(100, 100)], 100), 100, 2, 1, 1, 1, timing.ms_per_beat, [], [],)]
|
||||
beatmap.write_path("rewrite.osu")
|
||||
|
||||
|
|
107
sound_process.py
107
sound_process.py
|
@ -15,8 +15,6 @@ from pathlib import Path
|
|||
from time import sleep
|
||||
from datetime import timedelta
|
||||
|
||||
WORKING_SAMPLE_RATE = 1000
|
||||
|
||||
print("Starting...\n")
|
||||
|
||||
def filter_n_percent_serial(song_name, offset, n_iter, step, threshold):
|
||||
|
@ -30,8 +28,6 @@ def filter_n_percent_serial(song_name, offset, n_iter, step, threshold):
|
|||
filter data associated with song_name to keep only the highest threshold% values
|
||||
"""
|
||||
|
||||
offset = offset.total_seconds()
|
||||
|
||||
subprocess.run(["ffmpeg", "-ss", str(offset), "-t", str(offset+step*n_iter), "-i", song_name, "crop.wav"])
|
||||
|
||||
sample_rate, global_data = wavfile.read('crop.wav')
|
||||
|
@ -98,12 +94,12 @@ def get_freq(song_name, offset, step, songlen, data, display=False):
|
|||
"""
|
||||
for a given list of amplitudes, returns the corresponding peak frequencies
|
||||
"""
|
||||
offset = offset.total_seconds()
|
||||
fft_list = []
|
||||
times = []
|
||||
current_time = offset
|
||||
k = 0
|
||||
subprocess.run(["ffmpeg", "-ss", str(offset), "-t", str(offset+songlen),"-i",song_name, "crop.wav"])
|
||||
|
||||
subprocess.run(["ffmpeg", "-ss", str(offset), "-t", str(offset+songlen), "-i", song_name, "crop.wav"])
|
||||
|
||||
sample_rate, global_data = wavfile.read("crop.wav")
|
||||
#blit = int(len(global_data) / len(data))
|
||||
|
@ -122,7 +118,7 @@ def get_freq(song_name, offset, step, songlen, data, display=False):
|
|||
|
||||
for s in range(len(data)):
|
||||
if(data[s] != 0):
|
||||
pff = scipy.fft.rfft(global_data[int(s*len(global_data)/len(data)):int(WORKING_SAMPLE_RATE*step+int(s*len(global_data)/len(data)))])
|
||||
pff = scipy.fft.rfft(global_data[int(s*len(global_data)/len(data)):int(44100*step+int(s*len(global_data)/len(data)))])
|
||||
|
||||
mx = max(np.abs(pff))
|
||||
for id in range(len(pff)):
|
||||
|
@ -171,8 +167,6 @@ def void_freq(song_name, offset, songlen, increment, minfreq, maxfreq, upperthr,
|
|||
write : bool (should be set to True)
|
||||
output_file : technical
|
||||
"""
|
||||
offset = offset.total_seconds()
|
||||
|
||||
fft_list = []
|
||||
times = []
|
||||
current_time = offset
|
||||
|
@ -263,7 +257,7 @@ def void_freq(song_name, offset, songlen, increment, minfreq, maxfreq, upperthr,
|
|||
res[i] = np.int16(32767*res[i]/mx)
|
||||
|
||||
res = np.array(res)
|
||||
wavfile.write(output_file, WORKING_SAMPLE_RATE, res)
|
||||
wavfile.write(output_file, 44100, res)
|
||||
|
||||
#plt.plot(np.abs(pfreq[:len(fft_list[0])]), np.abs(fft_list[0]))
|
||||
#plt.grid()
|
||||
|
@ -424,10 +418,9 @@ def snap2(data, sample_rate, bpm, first_offset=0, div=4, show=False, adjust=Fals
|
|||
|
||||
|
||||
if(show):
|
||||
new2 = [0.9 if new[i] != 0 else 0 for i in range(len(new))]
|
||||
|
||||
t = [j/1000+first_offset for j in range(len(new))]
|
||||
scatter_t = [t[i] for i in range(len(new)) if new[i] != 0]
|
||||
scatter_chosen_rhythm = [0.9 for i in range(len(new)) if new[i] != 0 ]
|
||||
beats_1 = [0 for j in range(len(new))]
|
||||
beats_2 = [0 for k in range(len(new))]
|
||||
beats_4 = [0 for l in range(len(new))]
|
||||
|
@ -443,62 +436,40 @@ def snap2(data, sample_rate, bpm, first_offset=0, div=4, show=False, adjust=Fals
|
|||
beats_4[int(1000*current_t)] = 0.9
|
||||
|
||||
if(k % 2 == 0):
|
||||
beats_2[int(1000*current_t)] = 0.902
|
||||
beats_2[int(1000*current_t)] = 0.92
|
||||
|
||||
if(k % 4 == 0):
|
||||
beats_1[int(1000*current_t)] = 0.91
|
||||
|
||||
if(k % 16 == 0):
|
||||
beats_1[int(1000*current_t)] = 0.915
|
||||
beats_1[int(1000*current_t)] = 0.94
|
||||
|
||||
k += 1
|
||||
current_t = first_offset + k*60/(bpm*div)
|
||||
|
||||
points = plt.scatter(scatter_t, scatter_chosen_rhythm, marker="o", label="Detected Rhythm")
|
||||
div1_plot, = plt.plot(t, beats_4, "b-", label="1/4")
|
||||
div2_plot, = plt.plot(t, beats_2, "r-", label="1/2")
|
||||
div3_plot, = plt.plot(t, beats_1, "black", label="1/1")
|
||||
plt.plot(t, new2, "bo")
|
||||
plt.plot(t, beats_4, "r-")
|
||||
plt.plot(t, beats_2, "y-")
|
||||
plt.plot(t, beats_1, "g-")
|
||||
plt.xlabel("Time (s)")
|
||||
#plt.ylabel("Amplitude")
|
||||
plt.legend(handles=[points, div1_plot, div2_plot, div3_plot])
|
||||
plt.ylabel("Amplitude")
|
||||
plt.grid()
|
||||
plt.show()
|
||||
|
||||
return new
|
||||
|
||||
def convert_song(song_name:str, output_file="audio.wav") -> str:
|
||||
def convert_to_wav(song_name:str, output_file="audio.wav") -> str:
|
||||
"""
|
||||
Converts the song to .wav AND lower its sample rate to 1000.
|
||||
Converts the song to .wav, only if it's not already in wave format.
|
||||
Currently relies on file extension.
|
||||
Returns: the song_name that should be used afterwards.
|
||||
"""
|
||||
subprocess.run(["ffmpeg", "-y", "-i", song_name, "-ar", "1000", output_file])
|
||||
return output_file
|
||||
extension = Path(song_name).suffix
|
||||
match extension:
|
||||
case ".mp3" | ".ogg":
|
||||
print("Converting to .wav...")
|
||||
subprocess.run(["ffmpeg", "-y", "-i", song_name, output_file])
|
||||
return output_file
|
||||
return song_name
|
||||
|
||||
def quantify(time: timedelta, bpm, offset, snapping):
|
||||
"""
|
||||
Input: timedelta, bpm, offset, and snapping divisor (2 for 1/2, etc...)
|
||||
Returns a timedelta that is properly timed to the map.
|
||||
"""
|
||||
offset_ms = offset.total_seconds() / 1000
|
||||
time_ms = time.total_seconds() * 1000
|
||||
time_spacing = (60000/bpm)/snapping
|
||||
beats_away = round((time_ms - offset_ms)/time_spacing)
|
||||
new_time = timedelta(milliseconds=time_spacing*beats_away + offset_ms)
|
||||
return new_time
|
||||
|
||||
def quantify_all(amplitudes_ugly, bpm, offset_ms, divisor):
|
||||
n = len(amplitudes_ugly)
|
||||
covered = [False] * n
|
||||
times = []
|
||||
amplitudes = []
|
||||
for i in range(n):
|
||||
if amplitudes_ugly[i] != 0 and not covered[i]:
|
||||
times.append(quantify(timedelta(milliseconds=i), bpm, offset_ms, divisor))
|
||||
amplitudes.append(amplitudes_ugly[i])
|
||||
covered[i] = True
|
||||
return times, amplitudes
|
||||
|
||||
def process_song(filename, bpm, offset=timedelta(milliseconds=0), div_len_factor=1, n_iter_2=-1, threshold=0.5, divisor=4):
|
||||
def process_song(filename, bpm, offset0=0, div_len_factor=1, n_iter_2=-1, threshold=0.5, divisor=4):
|
||||
"""
|
||||
filename : string (name of the song)
|
||||
offset : int [+] (song mapping will start from this time in seconds, default is 0)
|
||||
|
@ -509,7 +480,9 @@ def process_song(filename, bpm, offset=timedelta(milliseconds=0), div_len_factor
|
|||
divisor : int [+] (beat divisor used to snap the notes, default is 4)
|
||||
"""
|
||||
|
||||
filename = convert_song(filename)
|
||||
filename = convert_to_wav(filename)
|
||||
|
||||
offset = offset0/1000
|
||||
|
||||
div_len = div_len_factor*60/bpm-0.01
|
||||
|
||||
|
@ -517,19 +490,18 @@ def process_song(filename, bpm, offset=timedelta(milliseconds=0), div_len_factor
|
|||
song_len = get_songlen(filename)
|
||||
|
||||
if(n_iter == -1):
|
||||
n_iter = floor((song_len-offset.total_seconds())/div_len)-1
|
||||
n_iter = int((song_len-offset/1000)/div_len)-1
|
||||
|
||||
filtered_name = f"{filename}_trimmed.wav"
|
||||
|
||||
void_freq(filename, offset, min(song_len, offset.total_seconds()+div_len*(n_iter+1)+0.01), 4*60/bpm, minfreq=0, maxfreq=220, upperthr=5000, ampthr=60, ampfreq = 1200, ampval = 5.0, leniency = 0.005, write=True, linear=False, output_file=filtered_name)
|
||||
void_freq(filename, offset, min(song_len, offset+div_len*(n_iter+1)+0.01), 4*60/bpm, minfreq=0, maxfreq=220, upperthr=5000, ampthr=60, ampfreq = 1200, ampval = 5.0, leniency = 0.005, write=True, linear=False, output_file=filtered_name)
|
||||
#void_freq(filename, offset, offset+div_len*(n_iter+1)+0.01, 4*60/bpm, minfreq=0, maxfreq=330, upperthr=2500, ampthr=60, ampfreq = 1200, ampval = 1/2000, leniency = 0.0, write=True, linear=True, output_file=filtered_name)
|
||||
amplitudes_ugly = filter_n_percent_serial(filtered_name, offset, n_iter, div_len, threshold)
|
||||
#datares = snap(datares, WORKING_SAMPLE_RATE, bpm, 4, True)
|
||||
times, amplitudes = quantify_all(amplitudes_ugly, bpm, offset, divisor)
|
||||
#frequencies = get_freq(filtered_name, offset, div_len, div_len*n_iter, datares, True)
|
||||
datares = filter_n_percent_serial(filtered_name, offset, n_iter, div_len, threshold)
|
||||
#datares = snap(datares, 44100, bpm, 4, True)
|
||||
datares = snap2(datares, 44100, bpm, first_offset=offset, div=divisor, show=True, adjust=True)
|
||||
frequencies = get_freq(filtered_name, offset, div_len, div_len*n_iter, datares, True)
|
||||
Path(f"{filename}_trimmed.wav").unlink()
|
||||
#return convert_tuple(datares, frequencies)
|
||||
return times, amplitudes
|
||||
return convert_tuple(datares, frequencies)
|
||||
|
||||
def main():
|
||||
data = process_song("tetris_4.wav", 160, n_iter_2=48, threshold=100)
|
||||
|
@ -587,7 +559,7 @@ if(False):
|
|||
#t, f, Zxx = fct("deltamax.wav", 9.992, 0.032, 20, 3000, False)
|
||||
#t, f, Zxx = fct("da^9.wav", 8.463, 0.032, 20, 5000, False)
|
||||
t, f, Zxx = fct("13. Cosmic Mind.wav", 0, 0.032, 20, 5000, False)
|
||||
#t, f, Zxx = fct("Furioso Melodia WORKING_SAMPLE_RATE.wav", 4, 0.032, 8, 3000, False)
|
||||
#t, f, Zxx = fct("Furioso Melodia 44100.wav", 4, 0.032, 8, 3000, False)
|
||||
#t, f, Zxx = fct("changing.wav", 0, 0.05, 3.9, 5000, False)
|
||||
#fct("worlds_end_3.wav", 75, (60/178)/4, 75+2, 2500)
|
||||
|
||||
|
@ -598,7 +570,7 @@ if(False):
|
|||
(t, data) = peaks("worlds_end_3.wav", 74.582, 6, False, 0.9)
|
||||
#(t, data) = peaks("da^9.wav", 8.463, 301.924 - 8.463, False, 0.95)
|
||||
#(t, data) = peaks("deltamax.wav", 8.463, 30101.924 - 8.463, False, 0.92)
|
||||
da = find_bpm(t, WORKING_SAMPLE_RATE, data, 100, 200, 1, 10)
|
||||
da = find_bpm(t, 44100, data, 100, 200, 1, 10)
|
||||
print("BPM data is", da)'''
|
||||
|
||||
#data = [-1 for i in range(int(x))]
|
||||
|
@ -800,7 +772,6 @@ def extract_peaks_v2(song_data, sample_rate, offset, display, threshold, seglen)
|
|||
return (t, song_data)
|
||||
|
||||
def peaks(song_name, offset, length, display, thr):
|
||||
offset = offset.total_seconds()
|
||||
subprocess.run(["ffmpeg", "-ss", str(offset), "-t", str(length), "-i", song_name, "crop.wav"])
|
||||
|
||||
sample_rate, audio_data = wavfile.read('crop.wav')
|
||||
|
@ -809,7 +780,7 @@ def peaks(song_name, offset, length, display, thr):
|
|||
subprocess.run(["rm", "crop.wav"])
|
||||
|
||||
#return extract_peaks(audio_data, sample_rate, offset, display, thr)
|
||||
return extract_peaks_v2(audio_data, sample_rate, offset, display, thr, WORKING_SAMPLE_RATE*2)
|
||||
return extract_peaks_v2(audio_data, sample_rate, offset, display, thr, 44100*2)
|
||||
|
||||
def find_bpm(sample_rate, data, minbpm, maxbpm, step, width):
|
||||
optimal = minbpm
|
||||
|
@ -1011,8 +982,6 @@ def filter_n_percent(song_name, offset, length, threshold, reduce, show):
|
|||
# threshold is in ]0, 100]
|
||||
# filter data associated with song_name to keep only the highest threshold% values
|
||||
|
||||
offset = offset.total_seconds()
|
||||
|
||||
subprocess.run(["ffmpeg", "-ss", str(offset), "-t", str(length), "-i", song_name, "crop.wav"])
|
||||
|
||||
sample_rate, song_data = wavfile.read('crop.wav')
|
||||
|
@ -1021,7 +990,7 @@ def filter_n_percent(song_name, offset, length, threshold, reduce, show):
|
|||
subprocess.run(["rm", "crop.wav"])
|
||||
|
||||
if(reduce):
|
||||
(song_data,e) = to_ms(song_data, WORKING_SAMPLE_RATE, 1)
|
||||
(song_data,e) = to_ms(song_data, 44100, 1)
|
||||
sample_rate = 1000
|
||||
|
||||
mx = max(song_data)
|
||||
|
@ -1051,4 +1020,4 @@ def filter_n_percent(song_name, offset, length, threshold, reduce, show):
|
|||
plt.show()
|
||||
|
||||
return song_data
|
||||
'''
|
||||
'''
|
Loading…
Reference in New Issue