Compare commits
2 Commits
9e7c18930f
...
cba14e4782
Author | SHA1 | Date |
---|---|---|
|
cba14e4782 | |
|
542b6e9996 |
|
@ -27,10 +27,11 @@ def retrieve_dominant_freqs(song_name, offset, songlen, segsize):
|
|||
|
||||
# remove high_pitched/low-pitched frequencies
|
||||
minfreq = 110
|
||||
maxfreq = 440*8
|
||||
maxfreq = 440*6
|
||||
|
||||
# cutting the song to only keep the one we're interested in
|
||||
subprocess.run(["ffmpeg", "-ss", str(offset), "-t", str(songlen+offset), "-i", song_name, "crop.wav"], shell=False)
|
||||
subprocess.run(["ffmpeg", "-ss", str(offset), "-t", str(songlen), "-i", song_name, "crop.wav"], shell=False)
|
||||
subprocess.run(["clear"])
|
||||
|
||||
# extracting data from cropped song
|
||||
sample_rate, raw_song_data = wavfile.read("crop.wav")
|
||||
|
@ -50,6 +51,9 @@ def retrieve_dominant_freqs(song_name, offset, songlen, segsize):
|
|||
else:
|
||||
song_data = raw_song_data
|
||||
|
||||
print("\nSampleRate : ", sample_rate)
|
||||
print("SegSize : ", blit)
|
||||
|
||||
# remove the copy of the song
|
||||
subprocess.run(["rm", "crop.wav"], shell=False)
|
||||
|
||||
|
@ -77,6 +81,7 @@ def retrieve_dominant_freqs(song_name, offset, songlen, segsize):
|
|||
# calculate the fft, append it to fft_list
|
||||
pff = scp.fft.rfft(song_data[int(current_time*sample_rate):int(sample_rate*(current_time+segsize))])
|
||||
fft_list.append(pff)
|
||||
#print("(k =", k, ") :", left_id, "to", right_id)
|
||||
|
||||
# just to avoid what causes 0.1 + 0.1 == 0.2 to be False
|
||||
k += 1
|
||||
|
@ -96,9 +101,9 @@ def retrieve_dominant_freqs(song_name, offset, songlen, segsize):
|
|||
for i in range(len(fft_list)):
|
||||
current_max = -1
|
||||
current_fmax = 0
|
||||
|
||||
|
||||
for j in range(len(fft_list[i])):
|
||||
if(pfreq[j] < maxfreq and pfreq[j] >= minfreq and np.abs(fft_list[i][j]) > current_max):
|
||||
if(j < len(pfreq) and pfreq[j] < maxfreq and pfreq[j] >= minfreq and np.abs(fft_list[i][j]) > current_max):
|
||||
current_max = np.abs(fft_list[i][j])
|
||||
current_fmax = pfreq[j]
|
||||
|
||||
|
@ -111,17 +116,10 @@ def retrieve_dominant_freqs(song_name, offset, songlen, segsize):
|
|||
|
||||
def void_freq_clean(song_name, offset, songlen, segsize, minfreq, maxfreq, ampthr, output_name):
|
||||
# removes unnecessary frequencies/amps from a song
|
||||
#ampthr is in [0, 1]
|
||||
|
||||
# remove high_pitched/low-pitched frequencies
|
||||
minfreq = 110
|
||||
maxfreq = 440*8
|
||||
|
||||
# cutting the song to only keep the one we're interested in
|
||||
subprocess.run(["ffmpeg", "-ss", str(offset), "-t", str(songlen+offset), "-i", song_name, "crop.wav"], shell=False)
|
||||
# ampthr is in [0, 1]
|
||||
|
||||
# extracting data from cropped song
|
||||
sample_rate, raw_song_data = wavfile.read("crop.wav")
|
||||
sample_rate, raw_song_data = wavfile.read(song_name)
|
||||
blit = int(sample_rate*segsize) # Te
|
||||
|
||||
song_data = [0 for i in range(len(raw_song_data))]
|
||||
|
@ -208,13 +206,15 @@ def void_freq_clean(song_name, offset, songlen, segsize, minfreq, maxfreq, ampth
|
|||
res = np.array(res)
|
||||
wavfile.write(output_name, sample_rate, res)
|
||||
|
||||
def retrieve_dominant_amps(song_name, offset, songlen, segsize, percent):
|
||||
def retrieve_dominant_amps(song_name, offset, songlen, segsize, percent, divlen):
|
||||
# returns a list with the percent% peak amplitudes alongside the sample rate
|
||||
# /!\ song_name is specified to be a list, NOT a list of couples (aka song is mono)
|
||||
# segsize is in seconds
|
||||
# divlen is in seconds
|
||||
|
||||
# cutting the song to only keep the one we're interested in
|
||||
subprocess.run(["ffmpeg", "-ss", str(offset), "-t", str(songlen+offset), "-i", song_name, "crop.wav"], shell=False)
|
||||
subprocess.run(["ffmpeg", "-ss", str(offset), "-t", str(songlen), "-i", song_name, "crop.wav"], shell=False)
|
||||
subprocess.run(["clear"])
|
||||
|
||||
# extracting data from cropped song
|
||||
sample_rate, raw_song_data = wavfile.read("crop.wav")
|
||||
|
@ -239,12 +239,24 @@ def retrieve_dominant_amps(song_name, offset, songlen, segsize, percent):
|
|||
is_locked = [False for i in range(len(song_data))]
|
||||
x = int((len(song_data)*percent)//100)
|
||||
|
||||
print("Retreiving the", int(x), "/", len(song_data), "highest values")
|
||||
elements = heapq.nlargest(int(x), enumerate(song_data), key=lambda x: x[1])
|
||||
#returns a list of couples [id, value]
|
||||
# length of segments
|
||||
seglen = int(divlen*sample_rate)
|
||||
|
||||
for idx in range(len(elements)):
|
||||
is_locked[elements[idx][0]] = True
|
||||
# current offset
|
||||
curptr = 0
|
||||
|
||||
print("Retreiving the", int(x), "/", len(song_data), "highest values")
|
||||
while(curptr < len(song_data)):
|
||||
left = curptr
|
||||
right = min(len(song_data), curptr+seglen)
|
||||
|
||||
#returns a list of couples [id, value]
|
||||
elements = heapq.nlargest(int(x), enumerate(song_data[left:right]), key=lambda x: x[1])
|
||||
|
||||
for idx in range(len(elements)):
|
||||
is_locked[elements[idx][0]+left] = True
|
||||
|
||||
curptr += seglen
|
||||
|
||||
for r in range(len(song_data)):
|
||||
if(is_locked[r] == False):
|
||||
|
@ -291,7 +303,7 @@ def convert_to_wav(song_name:str, output_file="audio.wav") -> str:
|
|||
return output_file
|
||||
return song_name
|
||||
|
||||
def retrieve_all_from_song(filename, t0, t1, dt=0.001, threshold=0.1):
|
||||
def retrieve_all_from_song(filename, t0, t1, bpm, dta=0.001, dtf=0.01, threshold=0.06, show=True):
|
||||
# dt = sample interval
|
||||
# threshold is in percent
|
||||
|
||||
|
@ -302,37 +314,37 @@ def retrieve_all_from_song(filename, t0, t1, dt=0.001, threshold=0.1):
|
|||
# converts format to .wav
|
||||
new_fn = convert_to_wav(filename)
|
||||
|
||||
# crop the song to the part that will be mapped
|
||||
subprocess.run(["ffmpeg", "-ss", str(t0), "-t", str(t1), "-i", new_fn, "crop0.wav"], shell=False)
|
||||
subprocess.run(["clear"])
|
||||
|
||||
sample_rate, _ = wavfile.read("crop0.wav")
|
||||
|
||||
print("Filtering song...")
|
||||
void_freq_clean(new_fn, t0, t1-t0, dt, 200, 2500, 0.05, "crop1.wav")
|
||||
#void_freq_clean(new_fn, t0, t1-t0, dt, 200, 2500, 0.05, "crop1.wav")
|
||||
|
||||
print("Now retrieving the frequencies")
|
||||
(maxlist, maxamps) = retrieve_dominant_freqs(new_fn, t0, t1-t0, dt)
|
||||
(maxlist, maxamps) = retrieve_dominant_freqs(new_fn, t0, t1, dtf)
|
||||
|
||||
print("Now retrieving the amplitudes")
|
||||
amps = retrieve_dominant_amps(new_fn, t0, t1-t0, dt, threshold)
|
||||
amps = retrieve_dominant_amps(new_fn, t0, t1, dta, threshold, 4/(bpm/60))
|
||||
|
||||
print("Len of freqs : ", len(maxlist), "|", len(maxamps))
|
||||
print("Len of amps : ", len(maxlist), "|", len(amps))
|
||||
|
||||
timesF = [t0 + dt*k for k in range(len(maxlist))]
|
||||
timesA = [t0 + dt*k for k in range(len(amps))]
|
||||
maxa = amps[0]
|
||||
for jj in amps:
|
||||
if(jj > maxa):
|
||||
maxa = jj
|
||||
|
||||
plt.plot(timesF, maxlist)
|
||||
plt.show()
|
||||
for i in range(len(amps)):
|
||||
amps[i] = (amps[i] * 2000) / maxa
|
||||
|
||||
plt.plot(timesA, amps)
|
||||
plt.show()
|
||||
if(show):
|
||||
timesF = [t0 + dtf*k for k in range(len(maxlist))]
|
||||
timesA = [t0 + dta*k for k in range(len(amps))]
|
||||
|
||||
plt.plot(timesA, amps)
|
||||
plt.plot(timesF, maxlist)
|
||||
plt.show()
|
||||
|
||||
# free()
|
||||
subprocess.run(["rm", "crop0.wav"], shell=False)
|
||||
|
||||
retrieve_all_from_song("tetris_4.wav", 0, 5)
|
||||
retrieve_all_from_song("ctype.mp3", 0, 5, 149.3, dtf=1/(149.3/60)/8)
|
||||
print("yipee")
|
||||
|
||||
|
||||
|
|
Binary file not shown.
Loading…
Reference in New Issue