fixed inconsistent outputs
This commit is contained in:
parent
39dd134a39
commit
dc7fde60de
253
new-process.py
253
new-process.py
|
@ -7,6 +7,7 @@ import subprocess
|
|||
import wave as wv
|
||||
import struct
|
||||
import librosa
|
||||
import heapq
|
||||
|
||||
print("Starting...\n")
|
||||
|
||||
|
@ -23,7 +24,7 @@ def fct(song_name, offset, increment, songlen, maxfreq, display):
|
|||
sample_rate, audio_data = wavfile.read('crop.wav')
|
||||
size = audio_data.size
|
||||
|
||||
subprocess.run(["clear"])
|
||||
#subprocess.run(["clear"])
|
||||
subprocess.run(["rm", "crop.wav"])
|
||||
|
||||
# do stuff here
|
||||
|
@ -87,7 +88,7 @@ def plot_max(time, freq, Zxx, save):
|
|||
fres = [0 for x in range(len(time))]
|
||||
maxres = [0 for x in range(len(time))]
|
||||
for t in range(len(time)):
|
||||
subprocess.run(["clear"])
|
||||
#subprocess.run(["clear"])
|
||||
print(t, "/", len(time))
|
||||
for f in range(len(Zxx)):
|
||||
if(maxres[t] < Zxx[f][t]):
|
||||
|
@ -117,11 +118,251 @@ def plot_max(time, freq, Zxx, save):
|
|||
|
||||
plt.show()
|
||||
|
||||
t, f, Zxx = fct("worlds_end_3.wav", 160.889, 0.032, 170.889, 3000, False)
|
||||
#t, f, Zxx = fct("changing.wav", 0, 0.05, 3.9, 5000)
|
||||
#fct("worlds_end_3.wav", 75, (60/178)/4, 75+2, 2500)
|
||||
def extract_peaks(song_data, sample_rate, offset, display, threshold):
|
||||
mx = max(song_data)
|
||||
for i in range(len(song_data)):
|
||||
#subprocess.run(["clear"])
|
||||
print(i, "/", len(song_data))
|
||||
if(song_data[i]/mx < threshold):
|
||||
song_data[i] = 0
|
||||
t = [offset + i/sample_rate for i in range(len(song_data))]
|
||||
|
||||
plot_max(t, f, Zxx, True)
|
||||
if(display):
|
||||
plt.plot(t, song_data, 'b+')
|
||||
plt.grid()
|
||||
plt.xlabel("t")
|
||||
plt.ylabel("amp")
|
||||
plt.show()
|
||||
|
||||
return (t, song_data)
|
||||
|
||||
def get_local_max(song_data, center, width):
|
||||
mx = 0
|
||||
for o in range(-width, width+1):
|
||||
togo = min(len(song_data)-1, center+o)
|
||||
togo = max(0, togo)
|
||||
if(mx < song_data[togo]):
|
||||
mx = song_data[togo]
|
||||
return mx
|
||||
|
||||
def extract_peaks_v2(song_data, sample_rate, offset, display, threshold, seglen):
|
||||
mx = 0
|
||||
for i in range(len(song_data)):
|
||||
if (i%seglen == 0):
|
||||
print("----")
|
||||
mx = get_local_max(song_data, i+seglen//2, seglen//2)
|
||||
#subprocess.run(["clear"])
|
||||
print(i, "/", len(song_data))
|
||||
if(song_data[i]/mx < threshold):
|
||||
song_data[i] = 0
|
||||
|
||||
t = [offset + i/sample_rate for i in range(len(song_data))]
|
||||
|
||||
if(display):
|
||||
plt.plot(t, song_data, 'b+')
|
||||
plt.grid()
|
||||
plt.xlabel("t")
|
||||
plt.ylabel("amp")
|
||||
plt.show()
|
||||
|
||||
return (t, song_data)
|
||||
|
||||
def peaks(song_name, offset, length, display, thr):
|
||||
subprocess.run(["ffmpeg", "-ss", str(offset), "-t", str(length), "-i", song_name, "crop.wav"])
|
||||
|
||||
sample_rate, audio_data = wavfile.read('crop.wav')
|
||||
|
||||
subprocess.run(["clear"])
|
||||
subprocess.run(["rm", "crop.wav"])
|
||||
|
||||
#return extract_peaks(audio_data, sample_rate, offset, display, thr)
|
||||
return extract_peaks_v2(audio_data, sample_rate, offset, display, thr, 44100*2)
|
||||
|
||||
def find_bpm(sample_rate, data, minbpm, maxbpm, step, width):
|
||||
optimal = minbpm
|
||||
optimal_acc = 0
|
||||
accuracy = 0
|
||||
|
||||
bpmlst = []
|
||||
scores = []
|
||||
|
||||
for beat in range(minbpm, maxbpm+step, step):
|
||||
loopturn = 0
|
||||
print("testing", beat)
|
||||
accuracy = 0
|
||||
current = 0
|
||||
|
||||
while(current+width < len(data)):
|
||||
loopturn += 1
|
||||
for o in range(-width, width+1):
|
||||
accuracy += data[current + o]
|
||||
#current = (loopturn*sample_rate)//beat
|
||||
current += (sample_rate)//beat
|
||||
|
||||
#accuracy = accuracy/loopturn
|
||||
|
||||
#accuracy *= (1+(maxbpm-beat)/minbpm)
|
||||
if optimal_acc < accuracy:
|
||||
optimal_acc = accuracy
|
||||
optimal = beat
|
||||
bpmlst.append(beat)
|
||||
scores.append(accuracy)
|
||||
|
||||
if(True):
|
||||
plt.plot(bpmlst, scores)
|
||||
plt.xlabel("BPM")
|
||||
plt.ylabel("Score")
|
||||
plt.grid()
|
||||
plt.show()
|
||||
|
||||
return (optimal, optimal_acc)
|
||||
|
||||
def find_bpm_2(sample_rate, data, threshold, maxbpm):
|
||||
mx = np.max(data)
|
||||
min_spacing = (60*sample_rate)/maxbpm
|
||||
k = 0
|
||||
while(k < len(data) and data[k]/mx < threshold):
|
||||
k += 1
|
||||
|
||||
k += 1
|
||||
spacing = []
|
||||
current = 1
|
||||
progress = 0
|
||||
|
||||
while(k < len(data)):
|
||||
if(k%(len(data)/100) == 0):
|
||||
print(progress, "%")
|
||||
progress += 1
|
||||
if(data[k]/mx >= threshold and current > min_spacing):
|
||||
spacing.append(current)
|
||||
current = 0
|
||||
else:
|
||||
current += 1
|
||||
k += 1
|
||||
|
||||
|
||||
for x in range(len(spacing)):
|
||||
spacing[x] = 60/(spacing[x]/sample_rate)
|
||||
|
||||
digits = [i for i in range(len(spacing))]
|
||||
if(True):
|
||||
plt.plot(digits, spacing)
|
||||
plt.xlabel("N")
|
||||
plt.ylabel("BPM")
|
||||
plt.grid()
|
||||
plt.show()
|
||||
|
||||
beat = np.mean(spacing)
|
||||
error = np.std(spacing)
|
||||
|
||||
return (np.round(beat, 3), np.round(error, 3))
|
||||
|
||||
def filter_n_percent(song_name, offset, length, threshold):
|
||||
# threshold is in ]0, 100]
|
||||
|
||||
subprocess.run(["ffmpeg", "-ss", str(offset), "-t", str(length), "-i", song_name, "crop.wav"])
|
||||
|
||||
sample_rate, song_data = wavfile.read('crop.wav')
|
||||
|
||||
subprocess.run(["clear"])
|
||||
subprocess.run(["rm", "crop.wav"])
|
||||
|
||||
is_locked = [False for i in range(len(song_data))]
|
||||
x = int((len(song_data)*threshold)//100)
|
||||
print("X = ", x)
|
||||
|
||||
mx = max(song_data)
|
||||
|
||||
print("Retreiving the", int(x), "/", len(song_data), "highest values")
|
||||
elements = heapq.nlargest(int(x), enumerate(song_data), key=lambda x: x[1])
|
||||
print("Done")
|
||||
|
||||
for idx in range(len(elements)):
|
||||
is_locked[elements[idx][0]] = True
|
||||
|
||||
for r in range(len(song_data)):
|
||||
if(is_locked[r] == False):
|
||||
song_data[r] = 0
|
||||
|
||||
if(True):
|
||||
t = [offset + j/sample_rate for j in range(len(song_data))]
|
||||
plt.plot(t, song_data)
|
||||
plt.xlabel("Time")
|
||||
plt.ylabel("Amplitude")
|
||||
plt.grid()
|
||||
plt.show()
|
||||
|
||||
return song_data
|
||||
|
||||
if(False):
|
||||
#t, f, Zxx = fct("no.wav", 0, 0.032, 10, 5000, False)
|
||||
#t, f, Zxx = fct("worlds_end_3.wav", 150.889, 0.032, 170.889, 3000, False)
|
||||
#t, f, Zxx = fct("deltamax.wav", 9.992, 0.032, 114.318, 3000, False)
|
||||
#t, f, Zxx = fct("deltamax.wav", 9.992, 0.032, 20, 3000, False)
|
||||
#t, f, Zxx = fct("da^9.wav", 8.463, 0.032, 20, 5000, False)
|
||||
t, f, Zxx = fct("13. Cosmic Mind.wav", 0, 0.032, 20, 5000, False)
|
||||
#t, f, Zxx = fct("Furioso Melodia 44100.wav", 4, 0.032, 8, 3000, False)
|
||||
#t, f, Zxx = fct("changing.wav", 0, 0.05, 3.9, 5000, False)
|
||||
#fct("worlds_end_3.wav", 75, (60/178)/4, 75+2, 2500)
|
||||
|
||||
plot_max(t, f, Zxx, True)
|
||||
|
||||
if(False):
|
||||
#(t, data) = peaks("worlds_end_3.wav", 0, 300, False, 0.92)
|
||||
(t, data) = peaks("worlds_end_3.wav", 74.582, 6, False, 0.9)
|
||||
#(t, data) = peaks("da^9.wav", 8.463, 301.924 - 8.463, False, 0.95)
|
||||
#(t, data) = peaks("deltamax.wav", 8.463, 30101.924 - 8.463, False, 0.92)
|
||||
da = find_bpm(t, 44100, data, 100, 200, 1, 10)
|
||||
print("BPM data is", da)
|
||||
|
||||
if(True):
|
||||
#data = filter_n_percent("worlds_end_3.wav", 74.582, 20, 0.1)
|
||||
data = filter_n_percent("no.wav", 1, 10, 0.1)
|
||||
#da = find_bpm(44100, data, 100, 200, 1, 0)
|
||||
da = find_bpm_2(44100, data, 0.97, 240)
|
||||
print("BPM is", da[0], "with std of", da[1])
|
||||
|
||||
print("Program finished with return 0")
|
||||
|
||||
|
||||
|
||||
|
||||
#data = [-1 for i in range(int(x))]
|
||||
#ids = [-1 for i in range(int(x))]
|
||||
'''
|
||||
data = []
|
||||
ids = []
|
||||
for k in range(int(x)):
|
||||
data.append(int(7*mx/10))
|
||||
ids.append(-1)
|
||||
# structure there is [[index, value]...]
|
||||
|
||||
i = 0
|
||||
calc = 0
|
||||
while(i < len(song_data)):
|
||||
if(i%10 == 0):
|
||||
print(i, "/", len(song_data))
|
||||
if(data[int(x)-1] < song_data[i]):
|
||||
calc += 1
|
||||
#print("\n \n \n \n \n")
|
||||
data[int(x)-1] = song_data[i]
|
||||
ids[int(x)-1] = i
|
||||
|
||||
k = int(x)-1
|
||||
#while(k < int(x) & data[0] > data[k]):
|
||||
while(k > 0 and data[k-1] <= data[k]):
|
||||
data[k], data[k-1] = data[k-1], data[k]
|
||||
ids[k], ids[k-1] = ids[k-1], ids[k]
|
||||
k -= 1
|
||||
|
||||
#print(data[int(x)-1], calc, "/", x)
|
||||
|
||||
i += skip
|
||||
i += 1
|
||||
|
||||
|
||||
for s in range(int(x)-1):
|
||||
if(data[s] < data[s+1]):
|
||||
print("Nope", s)
|
||||
assert(0)
|
||||
'''
|
5634
output.csv
5634
output.csv
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue