Restructured files and added another snap function that does not relies on any bpm
This commit is contained in:
parent
31639c850e
commit
177a8658f0
|
@ -0,0 +1,272 @@
|
||||||
|
from math import *
|
||||||
|
import numpy as np
|
||||||
|
from scipy.io import wavfile
|
||||||
|
from scipy import signal
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import subprocess
|
||||||
|
import wave as wv
|
||||||
|
import struct
|
||||||
|
import librosa
|
||||||
|
import heapq
|
||||||
|
import scipy
|
||||||
|
import os
|
||||||
|
import random
|
||||||
|
from pathlib import Path
|
||||||
|
from time import sleep
|
||||||
|
from datetime import timedelta
|
||||||
|
|
||||||
|
def adjust_timings(raw_data, snapped_data, indexes, thr=100):
|
||||||
|
"""
|
||||||
|
adjusts weirdly snapped notes
|
||||||
|
"""
|
||||||
|
current = 0
|
||||||
|
|
||||||
|
while(current < len(indexes)):
|
||||||
|
|
||||||
|
if(current < len(indexes) - 3 and current % 2 == 1): # on a 1/4 beat
|
||||||
|
if(snapped_data[indexes[current]] > thr and snapped_data[indexes[current+1]] > thr and snapped_data[indexes[current+2]] > thr and snapped_data[indexes[current+3]] <= thr):
|
||||||
|
# -XXX_
|
||||||
|
snapped_data[indexes[current+3]] = snapped_data[indexes[current+2]]
|
||||||
|
snapped_data[indexes[current+2]] = 0
|
||||||
|
|
||||||
|
if(current > 0 and current < len(indexes) - 1 and current % 2 == 1):
|
||||||
|
if(snapped_data[indexes[current]] > thr and (snapped_data[indexes[current+1]] < thr or snapped_data[indexes[current-1]] < thr)):
|
||||||
|
#_X_
|
||||||
|
'''if(snapped_data[indexes[current-1]] < thr and raw_data[indexes[current-1]] > raw_data[indexes[current+1]]):
|
||||||
|
snapped_data[indexes[current-1]] = snapped_data[indexes[current]]
|
||||||
|
else:
|
||||||
|
snapped_data[indexes[current+1]] = snapped_data[indexes[current]]'''
|
||||||
|
|
||||||
|
snapped_data[indexes[current]] = 0
|
||||||
|
|
||||||
|
current += 1
|
||||||
|
|
||||||
|
print("Resnap done")
|
||||||
|
return snapped_data
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def snap(data, sample_rate, bpm, divisor, show=False):
|
||||||
|
# adjust time amplitudes to match the given BPM
|
||||||
|
new = [0 for x in range(int(1000*len(data)/sample_rate))] # 1pt per millisecond
|
||||||
|
print("old =", len(data))
|
||||||
|
print("len =", 1000*len(data)/sample_rate)
|
||||||
|
k = 0
|
||||||
|
t = 0
|
||||||
|
percent = 0
|
||||||
|
for i in range(len(data)):
|
||||||
|
|
||||||
|
while(t < i/sample_rate):
|
||||||
|
t = k/(bpm*divisor)
|
||||||
|
k += 60
|
||||||
|
'''
|
||||||
|
if(np.abs(i/sample_rate - k/(bpm*divisor)) > np.abs(i/sample_rate - (k-60)/(bpm*divisor))):
|
||||||
|
k -= 60
|
||||||
|
t = k/(bpm*divisor)'''
|
||||||
|
|
||||||
|
if(i%(len(data)//100) == 0):
|
||||||
|
print(percent, "%")
|
||||||
|
percent += 1
|
||||||
|
|
||||||
|
if(int(t*1000) < len(new)):
|
||||||
|
new[int(t*1000)] = max(data[i], new[int(t*1000)])
|
||||||
|
else:
|
||||||
|
new[len(new)-1] = max(data[i], new[len(new)-1])
|
||||||
|
|
||||||
|
if(show):
|
||||||
|
t = [j/1000 for j in range(len(new))]
|
||||||
|
plt.plot(t, new)
|
||||||
|
plt.xlabel("Time (e)")
|
||||||
|
plt.ylabel("Amplitude")
|
||||||
|
plt.grid()
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
return new
|
||||||
|
|
||||||
|
def snap2(data, sample_rate, bpm, first_offset=0, div=4, show=False, adjust=False):
|
||||||
|
"""
|
||||||
|
data : list(int)
|
||||||
|
sample_rate : int
|
||||||
|
bpm = float
|
||||||
|
"""
|
||||||
|
|
||||||
|
song_len = int(len(data)/sample_rate)
|
||||||
|
|
||||||
|
indexes = []
|
||||||
|
app = True
|
||||||
|
|
||||||
|
reduced = [0 for i in range(song_len*1000)]
|
||||||
|
new = [0 for i in range(song_len*1000)]
|
||||||
|
|
||||||
|
# build the reduced version
|
||||||
|
for i in range(len(data)):
|
||||||
|
x = int(i*1000/sample_rate)
|
||||||
|
if(x < len(reduced)):
|
||||||
|
reduced[x] = max(reduced[x], data[i])
|
||||||
|
|
||||||
|
|
||||||
|
print("Build done")
|
||||||
|
# snap
|
||||||
|
k = 0
|
||||||
|
current_t = first_offset
|
||||||
|
|
||||||
|
while(current_t < 0):
|
||||||
|
k += 1
|
||||||
|
current_t = first_offset + k*60/(bpm*div)
|
||||||
|
|
||||||
|
for j in range(len(new)):
|
||||||
|
if(j/1000 > current_t):
|
||||||
|
k += 1
|
||||||
|
current_t = first_offset + k*60/(bpm*div)
|
||||||
|
app = True
|
||||||
|
|
||||||
|
y = int(current_t*1000)
|
||||||
|
if(y < len(new)):
|
||||||
|
new[y] = max(new[y], reduced[j])
|
||||||
|
|
||||||
|
if(app):
|
||||||
|
indexes.append(y)
|
||||||
|
app = False
|
||||||
|
|
||||||
|
print("Snap done")
|
||||||
|
|
||||||
|
if(adjust):
|
||||||
|
print("Len :", len(indexes))
|
||||||
|
|
||||||
|
new = adjust_timings(reduced, new, indexes)
|
||||||
|
|
||||||
|
|
||||||
|
if(show):
|
||||||
|
new2 = [0.9 if new[i] != 0 else 0 for i in range(len(new))]
|
||||||
|
|
||||||
|
t = [j/1000+first_offset for j in range(len(new))]
|
||||||
|
beats_1 = [0 for j in range(len(new))]
|
||||||
|
beats_2 = [0 for k in range(len(new))]
|
||||||
|
beats_4 = [0 for l in range(len(new))]
|
||||||
|
|
||||||
|
k = 0
|
||||||
|
current_t = first_offset
|
||||||
|
|
||||||
|
while(current_t < 0):
|
||||||
|
k += 1
|
||||||
|
current_t = first_offset + k*60/(bpm*div)
|
||||||
|
|
||||||
|
while(1000*current_t < len(new)):
|
||||||
|
beats_4[int(1000*current_t)] = 0.9
|
||||||
|
|
||||||
|
if(k % 2 == 0):
|
||||||
|
beats_2[int(1000*current_t)] = 0.92
|
||||||
|
|
||||||
|
if(k % 4 == 0):
|
||||||
|
beats_1[int(1000*current_t)] = 0.94
|
||||||
|
|
||||||
|
k += 1
|
||||||
|
current_t = first_offset + k*60/(bpm*div)
|
||||||
|
|
||||||
|
plt.plot(t, new2, "bo")
|
||||||
|
plt.plot(t, beats_4, "r-")
|
||||||
|
plt.plot(t, beats_2, "y-")
|
||||||
|
plt.plot(t, beats_1, "g-")
|
||||||
|
plt.xlabel("Time (s)")
|
||||||
|
plt.ylabel("Amplitude")
|
||||||
|
plt.grid()
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
return new
|
||||||
|
|
||||||
|
def filter_peaks(data, sample_rate=44100, thr=1000):
|
||||||
|
tdata = []
|
||||||
|
times = []
|
||||||
|
|
||||||
|
for i in range(len(data)):
|
||||||
|
if data[i] > thr:
|
||||||
|
tdata.append(data[i])
|
||||||
|
times.append(i/sample_rate)
|
||||||
|
|
||||||
|
return (tdata, times)
|
||||||
|
'''
|
||||||
|
times is in seconds
|
||||||
|
'''
|
||||||
|
|
||||||
|
def get_spacing(data, sample_rate=44100, show=False, retrieve=False):
|
||||||
|
tdata, times = filter_peaks(data, sample_rate=sample_rate)
|
||||||
|
|
||||||
|
absc = [i for i in range(len(times))]
|
||||||
|
dt = [0]
|
||||||
|
|
||||||
|
for i in range(1, len(times)):
|
||||||
|
dt.append(1000*(times[i]-times[i-1]))
|
||||||
|
|
||||||
|
if(show):
|
||||||
|
plt.plot(absc, dt)
|
||||||
|
plt.xlabel("x")
|
||||||
|
plt.ylabel("T(peak x) - T(peak x-1) (ms)")
|
||||||
|
plt.grid()
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
if(retrieve):
|
||||||
|
return dt
|
||||||
|
|
||||||
|
'''
|
||||||
|
post-condition :
|
||||||
|
- dt[i] = time(peak number i) - time(peak number i-1)
|
||||||
|
- dt is in ms
|
||||||
|
'''
|
||||||
|
|
||||||
|
def snap3(data, sample_rate=44100, mintime=10, initial_plot=False, after_plot=False):
|
||||||
|
'''
|
||||||
|
explaination :
|
||||||
|
1) get the time differences (cf get_spacing)
|
||||||
|
2) for eack peak : 2 cases
|
||||||
|
- if it's farther than mintime (in ms) :
|
||||||
|
> calculate the weighted mean if all elements in temp_list
|
||||||
|
> place a note at that mean
|
||||||
|
> empty temp_list
|
||||||
|
> push the current peak to temp_list
|
||||||
|
- else :
|
||||||
|
> push the current peak to temp_list
|
||||||
|
'''
|
||||||
|
data_peaks, peak_times = filter_peaks(data, sample_rate=sample_rate)
|
||||||
|
time_diff = get_spacing(data, show=initial_plot, retrieve=True)
|
||||||
|
|
||||||
|
res_peaks = []
|
||||||
|
res_times = []
|
||||||
|
|
||||||
|
segments = []
|
||||||
|
seglen = []
|
||||||
|
|
||||||
|
current_left = 0
|
||||||
|
|
||||||
|
for i in range(len(peak_times)):
|
||||||
|
if(time_diff[i] > mintime):
|
||||||
|
segments.append([current_left, i])
|
||||||
|
seglen.append(peak_times[i]-peak_times[current_left])
|
||||||
|
res_peaks.append(500)
|
||||||
|
res_times.append(peak_times[i])
|
||||||
|
current_left = i
|
||||||
|
|
||||||
|
for i in range(len(segments)):
|
||||||
|
print(segments[i], ":", seglen[i])
|
||||||
|
|
||||||
|
if(after_plot):
|
||||||
|
peakplot = []
|
||||||
|
diffplot = []
|
||||||
|
for x in range(len(peak_times)):
|
||||||
|
peakplot.append(peak_times[x]-peak_times[x]/1000)
|
||||||
|
peakplot.append(peak_times[x])
|
||||||
|
peakplot.append(peak_times[x]+peak_times[x]/1000)
|
||||||
|
diffplot.append(0)
|
||||||
|
diffplot.append(time_diff[x])
|
||||||
|
diffplot.append(0)
|
||||||
|
|
||||||
|
plt.plot(res_times, res_peaks, "ro", label="placed beats")
|
||||||
|
plt.plot(peakplot, diffplot, label="derivatine of time")
|
||||||
|
plt.xlabel("t (s)")
|
||||||
|
plt.ylabel(".")
|
||||||
|
plt.legend(loc="upper left")
|
||||||
|
plt.grid()
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
return (res_peaks, res_times)
|
||||||
|
|
||||||
|
|
181
sound_process.py
181
sound_process.py
|
@ -15,6 +15,8 @@ from pathlib import Path
|
||||||
from time import sleep
|
from time import sleep
|
||||||
from datetime import timedelta
|
from datetime import timedelta
|
||||||
|
|
||||||
|
import debug
|
||||||
|
|
||||||
print("Starting...\n")
|
print("Starting...\n")
|
||||||
|
|
||||||
def filter_n_percent_serial(song_name, offset, n_iter, step, threshold):
|
def filter_n_percent_serial(song_name, offset, n_iter, step, threshold):
|
||||||
|
@ -283,11 +285,11 @@ def test_sample(timelist):
|
||||||
print("F")
|
print("F")
|
||||||
sleep(timelist[i]-timelist[i-1])
|
sleep(timelist[i]-timelist[i-1])
|
||||||
|
|
||||||
def convert_tuple(datares, freq):
|
def convert_tuple(data, times):
|
||||||
"""
|
"""
|
||||||
Takes datares and converts it to a list of tuples (amplitude, datetimes)
|
Takes data and converts it to a list of tuples (amplitude, datetimes)
|
||||||
"""
|
"""
|
||||||
return [(timedelta(milliseconds=i), datares[i], freq[i]) for i in range(len(datares)) if datares[i] > 0]
|
return [(times[i], data[i]) for i in range(len(data))]
|
||||||
|
|
||||||
def get_songlen(filename):
|
def get_songlen(filename):
|
||||||
"""
|
"""
|
||||||
|
@ -298,163 +300,6 @@ def get_songlen(filename):
|
||||||
|
|
||||||
return (len(global_data)/sample_rate)
|
return (len(global_data)/sample_rate)
|
||||||
|
|
||||||
def snap(data, sample_rate, bpm, divisor, show=False):
|
|
||||||
# adjust time amplitudes to match the given BPM
|
|
||||||
new = [0 for x in range(int(1000*len(data)/sample_rate))] # 1pt per millisecond
|
|
||||||
print("old =", len(data))
|
|
||||||
print("len =", 1000*len(data)/sample_rate)
|
|
||||||
k = 0
|
|
||||||
t = 0
|
|
||||||
percent = 0
|
|
||||||
for i in range(len(data)):
|
|
||||||
|
|
||||||
while(t < i/sample_rate):
|
|
||||||
t = k/(bpm*divisor)
|
|
||||||
k += 60
|
|
||||||
'''
|
|
||||||
if(np.abs(i/sample_rate - k/(bpm*divisor)) > np.abs(i/sample_rate - (k-60)/(bpm*divisor))):
|
|
||||||
k -= 60
|
|
||||||
t = k/(bpm*divisor)'''
|
|
||||||
|
|
||||||
if(i%(len(data)//100) == 0):
|
|
||||||
print(percent, "%")
|
|
||||||
percent += 1
|
|
||||||
|
|
||||||
if(int(t*1000) < len(new)):
|
|
||||||
new[int(t*1000)] = max(data[i], new[int(t*1000)])
|
|
||||||
else:
|
|
||||||
new[len(new)-1] = max(data[i], new[len(new)-1])
|
|
||||||
|
|
||||||
if(show):
|
|
||||||
t = [j/1000 for j in range(len(new))]
|
|
||||||
plt.plot(t, new)
|
|
||||||
plt.xlabel("Time (e)")
|
|
||||||
plt.ylabel("Amplitude")
|
|
||||||
plt.grid()
|
|
||||||
plt.show()
|
|
||||||
|
|
||||||
return new
|
|
||||||
|
|
||||||
def adjust_timings(raw_data, snapped_data, indexes, thr=100):
|
|
||||||
"""
|
|
||||||
adjusts weirdly snapped notes
|
|
||||||
"""
|
|
||||||
current = 0
|
|
||||||
|
|
||||||
while(current < len(indexes)):
|
|
||||||
|
|
||||||
if(current < len(indexes) - 3 and current % 2 == 1): # on a 1/4 beat
|
|
||||||
if(snapped_data[indexes[current]] > thr and snapped_data[indexes[current+1]] > thr and snapped_data[indexes[current+2]] > thr and snapped_data[indexes[current+3]] <= thr):
|
|
||||||
# -XXX_
|
|
||||||
snapped_data[indexes[current+3]] = snapped_data[indexes[current+2]]
|
|
||||||
snapped_data[indexes[current+2]] = 0
|
|
||||||
|
|
||||||
if(current > 0 and current < len(indexes) - 1 and current % 2 == 1):
|
|
||||||
if(snapped_data[indexes[current]] > thr and (snapped_data[indexes[current+1]] < thr or snapped_data[indexes[current-1]] < thr)):
|
|
||||||
#_X_
|
|
||||||
'''if(snapped_data[indexes[current-1]] < thr and raw_data[indexes[current-1]] > raw_data[indexes[current+1]]):
|
|
||||||
snapped_data[indexes[current-1]] = snapped_data[indexes[current]]
|
|
||||||
else:
|
|
||||||
snapped_data[indexes[current+1]] = snapped_data[indexes[current]]'''
|
|
||||||
|
|
||||||
snapped_data[indexes[current]] = 0
|
|
||||||
|
|
||||||
current += 1
|
|
||||||
|
|
||||||
print("Resnap done")
|
|
||||||
return snapped_data
|
|
||||||
|
|
||||||
def snap2(data, sample_rate, bpm, first_offset=0, div=4, show=False, adjust=False):
|
|
||||||
"""
|
|
||||||
data : list(int)
|
|
||||||
sample_rate : int
|
|
||||||
bpm = float
|
|
||||||
"""
|
|
||||||
|
|
||||||
song_len = int(len(data)/sample_rate)
|
|
||||||
|
|
||||||
indexes = []
|
|
||||||
app = True
|
|
||||||
|
|
||||||
reduced = [0 for i in range(song_len*1000)]
|
|
||||||
new = [0 for i in range(song_len*1000)]
|
|
||||||
|
|
||||||
# build the reduced version
|
|
||||||
for i in range(len(data)):
|
|
||||||
x = int(i*1000/sample_rate)
|
|
||||||
if(x < len(reduced)):
|
|
||||||
reduced[x] = max(reduced[x], data[i])
|
|
||||||
|
|
||||||
|
|
||||||
print("Build done")
|
|
||||||
# snap
|
|
||||||
k = 0
|
|
||||||
current_t = first_offset
|
|
||||||
|
|
||||||
while(current_t < 0):
|
|
||||||
k += 1
|
|
||||||
current_t = first_offset + k*60/(bpm*div)
|
|
||||||
|
|
||||||
for j in range(len(new)):
|
|
||||||
if(j/1000 > current_t):
|
|
||||||
k += 1
|
|
||||||
current_t = first_offset + k*60/(bpm*div)
|
|
||||||
app = True
|
|
||||||
|
|
||||||
y = int(current_t*1000)
|
|
||||||
if(y < len(new)):
|
|
||||||
new[y] = max(new[y], reduced[j])
|
|
||||||
|
|
||||||
if(app):
|
|
||||||
indexes.append(y)
|
|
||||||
app = False
|
|
||||||
|
|
||||||
print("Snap done")
|
|
||||||
|
|
||||||
if(adjust):
|
|
||||||
print("Len :", len(indexes))
|
|
||||||
|
|
||||||
new = adjust_timings(reduced, new, indexes)
|
|
||||||
|
|
||||||
|
|
||||||
if(show):
|
|
||||||
new2 = [0.9 if new[i] != 0 else 0 for i in range(len(new))]
|
|
||||||
|
|
||||||
t = [j/1000+first_offset for j in range(len(new))]
|
|
||||||
beats_1 = [0 for j in range(len(new))]
|
|
||||||
beats_2 = [0 for k in range(len(new))]
|
|
||||||
beats_4 = [0 for l in range(len(new))]
|
|
||||||
|
|
||||||
k = 0
|
|
||||||
current_t = first_offset
|
|
||||||
|
|
||||||
while(current_t < 0):
|
|
||||||
k += 1
|
|
||||||
current_t = first_offset + k*60/(bpm*div)
|
|
||||||
|
|
||||||
while(1000*current_t < len(new)):
|
|
||||||
beats_4[int(1000*current_t)] = 0.9
|
|
||||||
|
|
||||||
if(k % 2 == 0):
|
|
||||||
beats_2[int(1000*current_t)] = 0.92
|
|
||||||
|
|
||||||
if(k % 4 == 0):
|
|
||||||
beats_1[int(1000*current_t)] = 0.94
|
|
||||||
|
|
||||||
k += 1
|
|
||||||
current_t = first_offset + k*60/(bpm*div)
|
|
||||||
|
|
||||||
plt.plot(t, new2, "bo")
|
|
||||||
plt.plot(t, beats_4, "r-")
|
|
||||||
plt.plot(t, beats_2, "y-")
|
|
||||||
plt.plot(t, beats_1, "g-")
|
|
||||||
plt.xlabel("Time (s)")
|
|
||||||
plt.ylabel("Amplitude")
|
|
||||||
plt.grid()
|
|
||||||
plt.show()
|
|
||||||
|
|
||||||
return new
|
|
||||||
|
|
||||||
def convert_to_wav(song_name:str, output_file="audio.wav") -> str:
|
def convert_to_wav(song_name:str, output_file="audio.wav") -> str:
|
||||||
"""
|
"""
|
||||||
Converts the song to .wav, only if it's not already in wave format.
|
Converts the song to .wav, only if it's not already in wave format.
|
||||||
|
@ -495,16 +340,24 @@ def process_song(filename, bpm, offset0=0, div_len_factor=1, n_iter_2=-1, thresh
|
||||||
filtered_name = f"{filename}_trimmed.wav"
|
filtered_name = f"{filename}_trimmed.wav"
|
||||||
|
|
||||||
void_freq(filename, offset, min(song_len, offset+div_len*(n_iter+1)+0.01), 4*60/bpm, minfreq=0, maxfreq=220, upperthr=5000, ampthr=60, ampfreq = 1200, ampval = 5.0, leniency = 0.005, write=True, linear=False, output_file=filtered_name)
|
void_freq(filename, offset, min(song_len, offset+div_len*(n_iter+1)+0.01), 4*60/bpm, minfreq=0, maxfreq=220, upperthr=5000, ampthr=60, ampfreq = 1200, ampval = 5.0, leniency = 0.005, write=True, linear=False, output_file=filtered_name)
|
||||||
#void_freq(filename, offset, offset+div_len*(n_iter+1)+0.01, 4*60/bpm, minfreq=0, maxfreq=330, upperthr=2500, ampthr=60, ampfreq = 1200, ampval = 1/2000, leniency = 0.0, write=True, linear=True, output_file=filtered_name)
|
|
||||||
datares = filter_n_percent_serial(filtered_name, offset, n_iter, div_len, threshold)
|
datares = filter_n_percent_serial(filtered_name, offset, n_iter, div_len, threshold)
|
||||||
#datares = snap(datares, 44100, bpm, 4, True)
|
|
||||||
datares = snap2(datares, 44100, bpm, first_offset=offset, div=divisor, show=True, adjust=True)
|
(snapped_data, times) = debug.snap3(datares, mintime=50, initial_plot=True, after_plot=True)
|
||||||
|
|
||||||
|
#frequencies=get_freq(filtered_name, offset, div_len, div_len*n_iter, snapped_data, True)
|
||||||
|
Path(f"{filename}_trimmed.wav").unlink()
|
||||||
|
return convert_tuple(snapped_data, times)
|
||||||
|
|
||||||
|
'''
|
||||||
|
datares = debug.snap2(datares, 44100, bpm, first_offset=offset, div=divisor, show=True, adjust=True)
|
||||||
frequencies = get_freq(filtered_name, offset, div_len, div_len*n_iter, datares, True)
|
frequencies = get_freq(filtered_name, offset, div_len, div_len*n_iter, datares, True)
|
||||||
Path(f"{filename}_trimmed.wav").unlink()
|
Path(f"{filename}_trimmed.wav").unlink()
|
||||||
return convert_tuple(datares, frequencies)
|
return convert_tuple(datares, frequencies)
|
||||||
|
'''
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
data = process_song("tetris_4.wav", 160, n_iter_2=48, threshold=100)
|
data = process_song("tetris_4.wav", 160, n_iter_2=48)
|
||||||
#print(data)
|
#print(data)
|
||||||
print("Program finished with return 0")
|
print("Program finished with return 0")
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue