added parsing fct and write fcté
This commit is contained in:
parent
c969501c52
commit
02c5579186
202
cleaned_sp.py
202
cleaned_sp.py
|
@ -324,6 +324,111 @@ def localize_frequencies(song_name, offset, songlen, segsize, output_name):
|
||||||
res = np.array(res)
|
res = np.array(res)
|
||||||
wavfile.write(output_name, sample_rate, res)
|
wavfile.write(output_name, sample_rate, res)
|
||||||
|
|
||||||
|
def write_result(song_name, offset, songlen, segsize, timing_pts, output_name):
|
||||||
|
# removes unnecessary frequencies/amps from a song
|
||||||
|
# ampthr is in [0, 1]
|
||||||
|
|
||||||
|
# extracting data from cropped song
|
||||||
|
sample_rate, raw_song_data = wavfile.read(song_name)
|
||||||
|
blit = int(sample_rate*segsize) # Te
|
||||||
|
|
||||||
|
song_data = [0 for i in range(len(raw_song_data))]
|
||||||
|
|
||||||
|
a = 0
|
||||||
|
if(is_data_stereo(raw_song_data)):
|
||||||
|
print("Converting to mono...")
|
||||||
|
for x in range(len(raw_song_data)):
|
||||||
|
song_data[x] = raw_song_data[x][0]/2 + raw_song_data[x][1]/2
|
||||||
|
|
||||||
|
if(x % (int(len(raw_song_data)/100)) == 0):
|
||||||
|
print(a, "/ 100")
|
||||||
|
a += 1
|
||||||
|
else:
|
||||||
|
song_data = raw_song_data
|
||||||
|
|
||||||
|
print("\nSampleRate : ", sample_rate)
|
||||||
|
print("SegSize : ", blit)
|
||||||
|
|
||||||
|
# calculate the frequencies associated to the FFTs
|
||||||
|
pfreq = scp.fft.rfftfreq(blit, 1/sample_rate)
|
||||||
|
|
||||||
|
# left boundary of segment to crop
|
||||||
|
current_time = offset
|
||||||
|
|
||||||
|
# list of FFTs
|
||||||
|
fft_list = []
|
||||||
|
|
||||||
|
# number of samples
|
||||||
|
k = 0
|
||||||
|
|
||||||
|
print("Retrieving freqs from", offset, "to", songlen+offset, "...")
|
||||||
|
while(current_time < songlen+offset-segsize):
|
||||||
|
# index corresponding to left boundary
|
||||||
|
left_id = int(current_time*sample_rate)
|
||||||
|
|
||||||
|
# index corresponding to right boundary
|
||||||
|
right_id = int((current_time+segsize)*sample_rate)
|
||||||
|
|
||||||
|
# calculate the fft, append it to fft_list
|
||||||
|
pff = scp.fft.rfft(song_data[int(current_time*sample_rate):int(sample_rate*(current_time+segsize))])
|
||||||
|
fft_list.append(pff)
|
||||||
|
|
||||||
|
# just to avoid what causes 0.1 + 0.1 == 0.2 to be False
|
||||||
|
k += 1
|
||||||
|
current_time = offset + k*segsize
|
||||||
|
#print(current_time)
|
||||||
|
|
||||||
|
print("\n\nSegSize :", segsize, "\nFFT :", len(fft_list), "\nFFT[0] :", len(fft_list[0]), "\npfreq :", len(pfreq), "\n\n")
|
||||||
|
|
||||||
|
i0 = 0
|
||||||
|
timing_pts.append(999999)
|
||||||
|
|
||||||
|
write_freq = 880
|
||||||
|
write_cur = 0
|
||||||
|
write_id = -1
|
||||||
|
while(write_cur <= write_freq): # shouldnt seg fault
|
||||||
|
write_id += 1
|
||||||
|
write_cur = pfreq[write_id]
|
||||||
|
|
||||||
|
|
||||||
|
# remove
|
||||||
|
# i = time, j = freq
|
||||||
|
for i in range(len(fft_list)):
|
||||||
|
# retrieve dominant freq
|
||||||
|
if(segsize*i >= timing_pts[i0]):
|
||||||
|
i0 += 1
|
||||||
|
|
||||||
|
maxfreq = 0
|
||||||
|
maxfreqid = 0
|
||||||
|
maxamp = 0
|
||||||
|
for j in range(len(fft_list[i])):
|
||||||
|
if(np.abs(fft_list[i][j]) > maxamp):
|
||||||
|
maxamp = np.abs(fft_list[i][j])
|
||||||
|
maxfreq = pfreq[j]
|
||||||
|
maxfreqid = j
|
||||||
|
|
||||||
|
fft_list[i][write_id] = max(maxamp*2, 10000)
|
||||||
|
|
||||||
|
|
||||||
|
# writing new .wav
|
||||||
|
res = []
|
||||||
|
print("Converting...")
|
||||||
|
for i in range(len(fft_list)):
|
||||||
|
ift = scp.fft.irfft(fft_list[i], n=blit)
|
||||||
|
for k in ift:
|
||||||
|
res.append(k)
|
||||||
|
#print(type(res[0]))
|
||||||
|
mx = 0
|
||||||
|
for j in range(len(res)):
|
||||||
|
if(res[j] > mx):
|
||||||
|
mx = res[j]
|
||||||
|
|
||||||
|
for i in range(len(res)):
|
||||||
|
res[i] = np.int16(32767*res[i]/mx)
|
||||||
|
|
||||||
|
res = np.array(res)
|
||||||
|
wavfile.write(output_name, sample_rate, res)
|
||||||
|
|
||||||
def retrieve_dominant_amps(song_name, offset, songlen, segsize, percent, divlen):
|
def retrieve_dominant_amps(song_name, offset, songlen, segsize, percent, divlen):
|
||||||
# returns a list with the percent% peak amplitudes alongside the sample rate
|
# returns a list with the percent% peak amplitudes alongside the sample rate
|
||||||
# /!\ song_name is specified to be a list, NOT a list of couples (aka song is mono)
|
# /!\ song_name is specified to be a list, NOT a list of couples (aka song is mono)
|
||||||
|
@ -407,6 +512,83 @@ def retrieve_dominant_amps(song_name, offset, songlen, segsize, percent, divlen)
|
||||||
# res[i] corresponds to time (offset + i*segsize)
|
# res[i] corresponds to time (offset + i*segsize)
|
||||||
return res
|
return res
|
||||||
|
|
||||||
|
def parse_after_filter(song_name, offset, songlen, segsize, dt0):
|
||||||
|
sample_rate, raw_song_data = wavfile.read(song_name)
|
||||||
|
blit = int(sample_rate*segsize) # Te
|
||||||
|
|
||||||
|
song_data = [0 for i in range(len(raw_song_data))]
|
||||||
|
|
||||||
|
a = 0
|
||||||
|
if(is_data_stereo(raw_song_data)):
|
||||||
|
print("Converting to mono...")
|
||||||
|
for x in range(len(raw_song_data)):
|
||||||
|
song_data[x] = raw_song_data[x][0]/2 + raw_song_data[x][1]/2
|
||||||
|
|
||||||
|
if(x % (int(len(raw_song_data)/100)) == 0):
|
||||||
|
print(a, "/ 100")
|
||||||
|
a += 1
|
||||||
|
else:
|
||||||
|
song_data = raw_song_data
|
||||||
|
|
||||||
|
print("\nSampleRate : ", sample_rate)
|
||||||
|
print("SegSize : ", blit)
|
||||||
|
|
||||||
|
# calculate the frequencies associated to the FFTs
|
||||||
|
pfreq = scp.fft.rfftfreq(blit, 1/sample_rate)
|
||||||
|
|
||||||
|
# left boundary of segment to crop
|
||||||
|
current_time = offset
|
||||||
|
|
||||||
|
# list of FFTs
|
||||||
|
fft_list = []
|
||||||
|
|
||||||
|
# number of samples
|
||||||
|
k = 0
|
||||||
|
|
||||||
|
print("Retrieving freqs from", offset, "to", songlen+offset, "...")
|
||||||
|
while(current_time < songlen+offset-segsize):
|
||||||
|
# index corresponding to left boundary
|
||||||
|
left_id = int(current_time*sample_rate)
|
||||||
|
|
||||||
|
# index corresponding to right boundary
|
||||||
|
right_id = int((current_time+segsize)*sample_rate)
|
||||||
|
|
||||||
|
# calculate the fft, append it to fft_list
|
||||||
|
pff = scp.fft.rfft(song_data[int(current_time*sample_rate):int(sample_rate*(current_time+segsize))])
|
||||||
|
fft_list.append(pff)
|
||||||
|
|
||||||
|
# just to avoid what causes 0.1 + 0.1 == 0.2 to be False
|
||||||
|
k += 1
|
||||||
|
current_time = offset + k*segsize
|
||||||
|
#print(current_time)
|
||||||
|
|
||||||
|
print("\n\nSegSize :", segsize, "\nFFT :", len(fft_list), "\nFFT[0] :", len(fft_list[0]), "\npfreq :", len(pfreq), "\n\n")
|
||||||
|
|
||||||
|
timing_points = []
|
||||||
|
prev_append = 2
|
||||||
|
|
||||||
|
for i in range(len(fft_list)):
|
||||||
|
# retrieve dominant freq
|
||||||
|
maxfreq = 0
|
||||||
|
maxfreqid = 0
|
||||||
|
maxamp = 0
|
||||||
|
for j in range(len(fft_list[i])):
|
||||||
|
if(np.abs(fft_list[i][j]) > maxamp):
|
||||||
|
maxamp = np.abs(fft_list[i][j])
|
||||||
|
maxfreq = pfreq[j]
|
||||||
|
maxfreqid = j
|
||||||
|
|
||||||
|
print("dominant at", i, ":" , maxamp)
|
||||||
|
if(maxamp > 100):
|
||||||
|
if(prev_append > 0):
|
||||||
|
timing_points.append(i*segsize + dt0)
|
||||||
|
prev_append -= 1
|
||||||
|
else:
|
||||||
|
prev_append = 2
|
||||||
|
|
||||||
|
print(timing_points)
|
||||||
|
return timing_points
|
||||||
|
|
||||||
def convert_to_wav(song_name:str, output_file="audio.wav") -> str:
|
def convert_to_wav(song_name:str, output_file="audio.wav") -> str:
|
||||||
"""
|
"""
|
||||||
Converts the song to .wav, only if it's not already in wave format.
|
Converts the song to .wav, only if it's not already in wave format.
|
||||||
|
@ -469,9 +651,23 @@ void_freq_clean(convert_to_wav("ctype.mp3"), 0.042, 5, 1/(149.3/60)/8, 100, 3000
|
||||||
localize_frequencies(convert_to_wav("ctype_void.mp3"), 0, 5, 1/(149.3/60)/12, "ctype_filtered.mp3")
|
localize_frequencies(convert_to_wav("ctype_void.mp3"), 0, 5, 1/(149.3/60)/12, "ctype_filtered.mp3")
|
||||||
retrieve_all_from_song("ctype_filtered.mp3", 0, 5, 149.3, dta=1/(149.3/60)/128, dtf=1/(149.3/60)/8)
|
retrieve_all_from_song("ctype_filtered.mp3", 0, 5, 149.3, dta=1/(149.3/60)/128, dtf=1/(149.3/60)/8)
|
||||||
'''
|
'''
|
||||||
void_freq_clean(convert_to_wav("tetris_2.wav"), 0.042, 5, 1/(149.3/60)/8, 100, 3000, 0.05, "tetris_2_void.wav")
|
SONG_LEN = 5
|
||||||
localize_frequencies(convert_to_wav("tetris_2_void.wav"), 0, 5, 1/(149.3/60)/12, "tetris_2_f.wav")
|
OFFSET = 0.042
|
||||||
retrieve_all_from_song("tetris_2_f.wav", 0, 5, 149.3, dtf=1/(149.3/60)/8)
|
SEGSIZE = 1/(149.3/60)
|
||||||
|
|
||||||
|
# remove high/low frequencies (often noise)
|
||||||
|
void_freq_clean(convert_to_wav("tetris_2.wav"), OFFSET, SONG_LEN, SEGSIZE/8, 100, 3000, 0.05, "tetris_2_void.wav")
|
||||||
|
|
||||||
|
# crops any part with let ring
|
||||||
|
localize_frequencies(convert_to_wav("tetris_2_void.wav"), 0, SONG_LEN-0.01, SEGSIZE/16, "tetris_2_f.wav")
|
||||||
|
|
||||||
|
# find timings
|
||||||
|
tp = parse_after_filter("tetris_2_f.wav", 0, SONG_LEN-0.01, SEGSIZE/16, OFFSET)
|
||||||
|
|
||||||
|
# write
|
||||||
|
write_result("tetris_2.wav", OFFSET, SONG_LEN-0.01, SEGSIZE/16, tp, "tetris_2_result.wav")
|
||||||
|
|
||||||
|
#retrieve_all_from_song("tetris_2_f.wav", 0, 5, 149.3, dtf=1/(149.3/60)/8)
|
||||||
print("yipee")
|
print("yipee")
|
||||||
|
|
||||||
|
|
||||||
|
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Loading…
Reference in New Issue