binding-of-isaac/src/base.c

564 lines
14 KiB
C

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <math.h>
#include <stdbool.h>
#include <unistd.h>
#include <termios.h>
#include <limits.h>
#include <time.h>
#include "hash.h"
#include "base.h"
int ln_baseN(int n, int b) {
int r = 0;
while(n != 0) {
n = n / b;
r++;
}
return r;
}
int pw(int x, int n) {
if (n<0)
return 0;
if (n==0)
return 1;
if (n%2==0)
return pw(x*x, n/2);
return x*pw(x*x, n/2);
}
double pwf(double x, int n) {
if (n<0)
return 0.0;
if (n==0)
return 1.0;
if (n%2==0)
return pwf(x*x, n/2);
return x*pwf(x*x, n/2);
}
int abs(int n) {
if(n > 0) {
return n;
} else {
return (-n);
}
}
int min(int a, int b) {
if(a > b) {
return b;
};
return a;
}
int max(int a, int b) {
if(a < b) {
return b;
};
return a;
}
float minf(float a, float b) {
if(a > b) {
return b;
};
return a;
}
float maxf(float a, float b) {
if(a < b) {
return b;
};
return a;
}
double mind(double a, double b) {
if(a > b) {
return b;
};
return a;
}
double maxd(double a, double b) {
if(a < b) {
return b;
};
return a;
}
double absf(double n) {
if(n > 0.0f) {
return n;
} else {
return (-n);
}
}
bool xor(bool a, bool b) {
return ((a && !b) || (!a && b));
}
// n >= 0
int reverse(int n) {
int res = 0;
int nexp = pw(10, ln_baseN(n, 10));
int cexp = nexp/10;
int left = n;
while(cexp > 0) {
res += (left%10)*cexp;
cexp /= 10;
left /= 10;
}
//printf("%d -> %d\n", n, res);
return res;
}
int convex_seg(int x1, int x2, double theta) {
return (int)(((1.0f - theta) * x1 + theta * x2));
}
double convex_pt(double a, double b, double theta) {
return (a+(b-a)*theta);
}
double convex_tri(double a, double tha, double b, double thb, double c, double thc) {
return (a*tha + b*thb + c*thc);
}
pt_2d convex_pt2d(pt_2d A, pt_2d B, double theta) {
pt_2d res;
res.x = A.x+(B.x-A.x)*theta;
res.y = A.y+(B.y-A.y)*theta;
res.z = A.z+(B.z-A.z)*theta;
return res;
}
pt_2d convex_pt2d_tri(pt_2d A, double tha, pt_2d B, double thb, pt_2d C, double thc) {
pt_2d res;
res.x = A.x*tha+B.x*thb+C.x*thc;
res.y = A.y*tha+B.y*thb+C.y*thc;
res.z = A.z*tha+B.z*thb+C.z*thc;
return res;
}
bool is_an_integer(char c) {
return ((int)c >= 48 && (int)c <= 57);
}
pt_2d vect_diff(pt_2d p1, pt_2d p2) {
pt_2d res;
res.x = p2.x - p1.x;
res.y = p2.y - p1.y;
res.z = p2.z - p1.z;
return res;
}
double dot2D(pt_2d p1, pt_2d p2) {
return p1.x * p2.x + p1.y * p2.y;
}
double dot3D(pt_2d p1, pt_2d p2) {
return p1.x * p2.x + p1.y * p2.y + p1.z * p2.z;
}
double to_double(int n) {
return (double)n;
}
int to_int(double n) {
return (int)n;
}
int line_count(char* filename) {
FILE* ptr = fopen(filename, "r");
char c = 'd';
int n = 0;
while(c != EOF) {
if(c == '\n') {
n += 1;
};
c = fgetc(ptr);
};
fclose(ptr);
return (n+1);
}
int str_to_int(char* s) {
int res = 0;
int i = 0;
while(s[i] != '\0' && is_an_integer(s[i])) {
res *= 10;
res += (int)s[i] - 48;
i++;
};
return res;
}
bool str_equal(char* s1, char* s2) {
if(s1[0] == '\0' || s2[0] == '\0') {
return (s1[0] == '\0' && s2[0] == '\0');
}
return (s1[0] == s2[0] && str_equal(&s1[1], &s2[1]));
}
// ------------------------------------------------------------------------------------------------ //
cube_0* create_cube_0(double x, double y, double z, double w, double h, double d, double hz_a, double vt_a, int r, int g, int b) {
cube_0* cb = malloc(sizeof(cube_0));
cb->red = r;
cb->green = g;
cb->blue = b;
cb->x = x;
cb->y = y;
cb->z = z;
cb->w = w;
cb->h = h;
cb->d = d;
cb->hz_angle = hz_a;
cb->vt_angle = vt_a;
return cb;
}
void fill_cube_0(cube_0* cb, double x, double y, double z, double w, double h, double d, double hz_a, double vt_a, int r, int g, int b) {
cb->red = r;
cb->green = g;
cb->blue = b;
cb->x = x;
cb->y = y;
cb->z = z;
cb->w = w;
cb->h = h;
cb->d = d;
cb->hz_angle = hz_a;
cb->vt_angle = vt_a;
}
cube create_cube(double x, double y, double z, double w, double h, double d, double hz_a, double vt_a, int r, int g, int b) {
cube cb = malloc(sizeof(cube_0));
cb = create_cube_0(x, y, z, w, h, d, hz_a, vt_a, r, g, b);
return cb;
}
void free_cube(cube c) {
free(c);
}
teleporter* create_teleporter(
double x, double y, double z, double w, double h, double d, double hz_a, double vt_a, int r, int g, int b,
int chx_dest, int chy_dest, double x_dest, double y_dest, double z_dest
) {
teleporter* tp = malloc(sizeof(teleporter));
tp->dest_chx = chx_dest;
tp->dest_chy = chy_dest;
tp->dest_x = x_dest;
tp->dest_y = y_dest;
tp->dest_z = z_dest;
tp->hitbox = create_cube_0(x, y, z, w, h, d, hz_a, vt_a, r, g, b);
return tp;
}
void copy_cube(cube_0* src, cube_0* dest) {
dest->red = src->red;
dest->green = src->green;
dest->blue = src->blue;
dest->hz_angle = src->hz_angle;
dest->vt_angle = src->vt_angle;
dest->x = src->x;
dest->y = src->y;
dest->z = src->z;
dest->w = src->w;
dest->h = src->h;
dest->d = src->d;
}
void copy_entity(entity* src, entity* dest) {
dest->damage = src->damage;
dest->entity_type = src->entity_type;
*(dest->hitpoints) = *(src->hitpoints);
dest->metad1 = src->metad1;
dest->metad2 = src->metad2;
dest->metad3 = src->metad3;
dest->metad4 = src->metad4;
dest->metad5 = src->metad5;
dest->metad6 = src->metad6;
dest->metad7 = src->metad7;
dest->metad8 = src->metad8;
dest->metad9 = src->metad9;
dest->metai1 = src->metai1;
dest->metai2 = src->metai2;
dest->metai3 = src->metai3;
dest->metai4 = src->metai4;
dest->metai5 = src->metai5;
dest->metai6 = src->metai6;
dest->metach1 = src->metach1;
dest->metach2 = src->metach2;
dest->updatePos = src->updatePos;
dest->onHit = src->onHit;
dest->onDeath = src->onDeath;
dest->tex = src->tex;
dest->tex2 = src->tex2;
copy_cube(src->pos, dest->pos);
}
// ------------------------------------------------------------------------------------------------ //
double distance_pt_pt_3d(double x0, double y0, double z0, double x1, double y1, double z1) {
return sqrt((x1 - x0)*(x1 - x0)+(y1 - y0)*(y1 - y0)+(z1 - z0)*(z1 - z0));
}
double distance_pt_pt_2d_sq(double x0, double y0, double x1, double y1) {
return (x1 - x0)*(x1 - x0)+(y1 - y0)*(y1 - y0);
}
double distance_pt_pt_3d_sq(double x0, double y0, double z0, double x1, double y1, double z1) {
return (x1 - x0)*(x1 - x0)+(y1 - y0)*(y1 - y0)+(z1 - z0)*(z1 - z0);
}
double distance_pt_seg_3d(double x, double y, double z, double sx, double sy, double sz, double ex, double ey, double ez) {
double theta = -(
((ex - sx) * (sx - x) + (ey - sy) * (sy - y) + (ez - sz) * (sz - z)) /
((ex - sx) * (ex - sx) + (ey - sy) * (ey - sy) + (ez - sz) * (ez - sz))
);
if(theta >= 0.0 && theta <= 1.0) {
return (distance_pt_pt_3d(x, y, z, convex_pt(sx, ex, theta), convex_pt(sy, ey, theta), convex_pt(sz, ez, theta)));
} else if (theta < 0.0) {
return (distance_pt_pt_3d(x, y, z, sx, sy, sz));
} else {
return (distance_pt_pt_3d(x, y, z, ex, ey, ez));
}
}
double distance_pt_cube_axis(double coord, double begin, double end) {
if(coord < begin) {
return (begin);
} else if(coord > end) {
return (end);
} else {
return (coord);
}
}
double distance_pt_cube_aligned_3d(double x0, double y0, double z0, double cx, double cy, double cz, double cw, double ch, double cd) {
double clx = distance_pt_cube_axis(x0, cx, cx+cw);
double cly = distance_pt_cube_axis(y0, cy, cy+ch);
double clz = distance_pt_cube_axis(z0, cz, cz+cd);
return sqrt((x0-clx)*(x0-clx) + (y0-cly)*(y0-cly) + (z0-clz)*(z0-clz));
}
double distance_pt_cube_aligned_3d_infinite(double x0, double y0, double z0, double cx, double cy, double cz, double cw, double ch, double cd) {
double clx = distance_pt_cube_axis(x0, cx, cx+cw);
double cly = distance_pt_cube_axis(y0, cy, cy+ch);
double clz = distance_pt_cube_axis(z0, cz, cz+cd);
return maxd(maxd(absf(clx-x0), absf(cly-y0)), absf(clz-z0));
}
double distance_pt_cube_0_3d(double x0, double y0, double z0, cube_0* c) {
// places the origin at the center of the cube
double x = x0 - (c->x + c->w/2.0);
double y = y0 - (c->y + c->h/2.0);
double z = z0 - (c->z + c->d/2.0);
// rotate the point : y then x
double xry = x*cos(c->hz_angle) + z*sin(c->hz_angle);
double yry = y;
double zry = z*cos(c->hz_angle) - x*sin(c->hz_angle);
double xrx = xry;
double yrx = yry*cos(c->vt_angle) - zry*sin(c->vt_angle);
double zrx = zry*cos(c->vt_angle) + yry*sin(c->vt_angle);
// now the cube and pt are aligned, and (0, 0, 0) is at the cube's (bary)center
return distance_pt_cube_aligned_3d(xrx, yrx, zrx, -c->w/2.0, -c->h/2.0, -c->d/2.0, c->w, c->h, c->d);
}
double distance_pt_cube_0_3d_infinite(double x0, double y0, double z0, cube_0* c) {
// places the origin at the center of the cube
double x = x0 - (c->x + c->w/2.0);
double y = y0 - (c->y + c->h/2.0);
double z = z0 - (c->z + c->d/2.0);
// rotate the point : y then x
double xry = x*cos(c->hz_angle) + z*sin(c->hz_angle);
double yry = y;
double zry = z*cos(c->hz_angle) - x*sin(c->hz_angle);
double xrx = xry;
double yrx = yry*cos(c->vt_angle) - zry*sin(c->vt_angle);
double zrx = zry*cos(c->vt_angle) + yry*sin(c->vt_angle);
// now the cube and pt are aligned, and (0, 0, 0) is at the cube's (bary)center
return distance_pt_cube_aligned_3d_infinite(xrx, yrx, zrx, -c->w/2.0, -c->h/2.0, -c->d/2.0, c->w, c->h, c->d);
}
// ------------------------------------------------------------------------------------------------ //
void project_to_camera(double x0, double y0, double z0, double* rx, double* ry, double* rz) {
// align pt to (0, 0, 0)
double x = x0 - camx;
double y = y0 - camy;
double z = z0 - camz;
// rotate (y)
double xry = x*cos(rot_hz) - z*sin(rot_hz);
double yry = y;
double zry = z*cos(rot_hz) + x*sin(rot_hz);
// rotate (x)
if(rx != NULL) {*rx = xry;}
if(ry != NULL) {*ry = yry*cos(rot_vt) + zry*sin(rot_vt);}
if(rz != NULL) {*rz = zry*cos(rot_vt) - yry*sin(rot_vt);}
}
void project_to_cube(double x0, double y0, double z0, double* rx, double* ry, double* rz, cube_0* c) {
// align pt to (0, 0, 0)
double x = x0 - (c->x + c->w/2.0);
double y = y0 - (c->y + c->h/2.0);
double z = z0 - (c->z + c->d/2.0);
// rotate (y)
double xry = x*cos(c->hz_angle) - z*sin(c->hz_angle);
double yry = y;
double zry = z*cos(c->hz_angle) + x*sin(c->hz_angle);
// rotate (x)
if(rx != NULL) {*rx = c->x + c->w/2.0 + xry;}
if(ry != NULL) {*ry = c->y + c->h/2.0 + yry*cos(c->vt_angle) + zry*sin(c->vt_angle);}
if(rz != NULL) {*rz = c->z + c->d/2.0 + zry*cos(c->vt_angle) - yry*sin(c->vt_angle);}
}
pt_2d rotate_to_x_axis(double x, double y, double z, double y0, double z0, int angle) {
pt_2d res;
res.x = x;
res.y = y0+(y-y0)*cos(angle) + (z-z0)*sin(angle);
res.z = z0+(z-z0)*cos(angle) - (y-y0)*sin(angle);
//printf("> %lf %lf %lf <\n", res.x, res.y, res.z);
return res;
}
pt_2d rotate_to_y_axis(double x, double y, double z, double x0, double z0, int angle) {
pt_2d res;
res.x = x0+(x-x0)*cos(angle) - (z-z0)*sin(angle);
res.y = y;
res.z = z0+(z-z0)*cos(angle) + (x-x0)*sin(angle);
return res;
}
// ------------------------------------------------------------------------------------------------ //
void remove_entity(entity** arr, int* memlen, int* len, int index) {
if(*len > 0) {
entity* temp = arr[index];
arr[index] = arr[*len -1];
arr[*len -1] = temp;
*len -= 1;
}
}
entity* remove_entity_return(entity** arr, int* memlen, int* len, int index) {
if(*len > 0) {
entity* temp = arr[index];
arr[index] = arr[*len -1];
arr[*len -1] = temp;
*len -= 1;
return temp;
}
return NULL;
}
void add_entity(entity** arr, int* memlen, int* len, entity* ent) {
if(*memlen == *len) {
entity** newarr = malloc(sizeof(entity*)*2*(*memlen));
for(int k = 0; k < *len; k++) {
newarr[k] = arr[k];
}
for(int k = *len; k < 2*(*memlen); k++) {
newarr[k] = malloc(sizeof(entity));
newarr[k]->pos = malloc(sizeof(cube_0));
newarr[k]->hitpoints = malloc(sizeof(int));
}
free(*arr);
arr = newarr;
*memlen *= 2;
}
copy_entity(ent, arr[*len]);
*len += 1;
}
int is_neg0 = 1;
int read_int(FILE* ptr) {
bool is_reading = false;
int buffer = 0;
int sign = 1;
char c = fgetc(ptr);
while(c != EOF) {
if(c == '-') {
sign = -1;
} else if((int)c >= 48 && (int)c <= 57) {
is_reading = true;
buffer = 10*buffer + (int)c - 48;
} else if(is_reading) {
if(sign == -1 && buffer == 0) {
is_neg0 = -1;
} else {
is_neg0 = 1;
}
return buffer*sign;
}
c = fgetc(ptr);
}
if(sign == -1 && buffer == 0) {
is_neg0 = -1;
} else {
is_neg0 = 1;
}
return buffer*sign;
}
char* read_string(FILE* ptr) {
char* res0 = malloc(sizeof(char)*52);
char c = fgetc(ptr);
int i = 0;
while(c != EOF && c == ' ') { // ignore initial spaces
c = fgetc(ptr);
}
while(c != EOF && c != ',') {
res0[i] = c;
i += 1;
c = fgetc(ptr);
}
res0[i] = '\0';
return res0;
}
double sign(double __x) {
if(__x >= 0.0) {
return 1.0;
}
return -1.0;
}
double read_float(FILE* ptr) {
int ent = read_int(ptr);
int sn0 = is_neg0;
int frac = read_int(ptr);
//printf("%d.%d; ", ent, frac);
if(ent != 0.0) {
return sn0*(ent/abs(ent))*(absf((double)ent) + ((double)frac)/(pow(10.0, (double)ln_baseN(frac, 10))));
} else {
//printf("%d, %d\n", ent, frac);
return sn0*((double)frac)/(pow(10.0, (double)ln_baseN(frac, 10)));
}
}