PinballMachineMaker/main.ml

326 lines
10 KiB
OCaml

open Graphics ;;
Random.self_init () ;;
(* use Ctrl+F with 'XXXXXX' to look for sections *)
(* ------------------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------------------- *)
(* XXXXXX Types + Constants *)
exception ReturnBool of bool ;;
exception ReturnInt of int ;;
type pt_2d = {
mutable x : float ;
mutable y : float ;
} ;;
type polygon = {
vertexes : pt_2d array ;
rgb : int ;
xmin : float ;
xmax : float ;
ymin : float ;
ymax : float ;
mutable restitution : float ;
score : int ;
} ;;
type ball = {
radius : float ;
mass : float ;
rgb : int ;
xy : pt_2d ;
v : pt_2d ;
a : pt_2d ;
fres : pt_2d ;
} ;;
let univ_dt = 0.05 ;;
let univ_friction = 0.8 ;;
let univ_g = 300.0 ;;
let pi = 3.14159265358979343 ;;
let gforce = {x = 0. ; y = -. univ_g} ;;
let score = ref 0 ;;
(* ------------------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------------------- *)
(* XXXXXX Arithmetical operations *)
let rec ln10 n = match n with
| k when k < 0 -> failwith "Are you sure about that ?"
| k when k < 10 -> 0
| k -> 1 + ln10 (k/10) ;;
let convexf x y theta =
(1.0 -. theta) *. x +. theta *. y ;;
(* ------------------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------------------- *)
(* XXXXXX Vectorial operations *)
let vect_convexf (px : pt_2d) (py : pt_2d) theta =
{
x = convexf px.x py.x theta ;
y = convexf px.y py.y theta ;
} ;;
let vect_sum_2D (p1 : pt_2d) (p2 : pt_2d) =
{
x = p1.x +. p2.x ;
y = p1.y +. p2.y ;
} ;;
let vect_diff_2D (p1 : pt_2d) (p2 : pt_2d) =
{
x = p1.x -. p2.x ;
y = p1.y -. p2.y ;
} ;;
let vect_mult_2D (p1 : pt_2d) (lambda : float) =
{
x = p1.x *. lambda ;
y = p1.y *. lambda ;
} ;;
let vect_midpoint_2D (p1 : pt_2d) (p2 : pt_2d) =
{
x = (p1.x +. p2.x) /. 2.0 ;
y = (p1.y +. p2.y) /. 2.0 ;
} ;;
let vect_normal_2D (p1 : pt_2d) (p2 : pt_2d) =
{
x = -. (p2.y -. p1.y) ;
y = (p2.x -. p1.x) ;
} ;;
let return_proj_of_point (m : pt_2d) (spt : pt_2d) (ept : pt_2d) =
match (-. ((ept.x -. spt.x) *. (spt.x -. m.x) +. (ept.y -. spt.y) *. (spt.y -. m.y)) /. ((ept.x -. spt.x) *. (ept.x -. spt.x) +. (ept.y -. spt.y) *. (ept.y -. spt.y))) with
| k when k >= 0. && k <= 1. -> (vect_convexf spt ept k)
| k when k < 0. -> spt
| k -> ept ;;
let return_proj_of_point_D (m : pt_2d) (spt : pt_2d) (ept : pt_2d) =
let theta = (-. ((ept.x -. spt.x) *. (spt.x -. m.x) +. (ept.y -. spt.y) *. (spt.y -. m.y)) /. ((ept.x -. spt.x) *. (ept.x -. spt.x) +. (ept.y -. spt.y) *. (ept.y -. spt.y))) in
(vect_convexf spt ept theta) ;;
let vect_dot_product_2D (p1 : pt_2d) (p2 : pt_2d) =
p1.x *. p2.x +. p1.y *. p2.y ;;
let vect_norm_2D (p1 : pt_2d) =
Float.sqrt (vect_dot_product_2D p1 p1) ;;
let vect_dist_2D (p1 : pt_2d) (p2 : pt_2d) =
vect_norm_2D (vect_diff_2D p1 p2) ;;
let vect_scale_2D (v1 : pt_2d) (v2 : pt_2d) =
vect_mult_2D v1 ((vect_norm_2D v2) /. (vect_norm_2D v1)) ;;
let vect_normalize_2D (v1 : pt_2d) =
vect_mult_2D v1 (1.0 /. (vect_norm_2D v1)) ;;
let vect_symmetry (m : pt_2d) (p1 : pt_2d) (p2 : pt_2d) =
let proj = return_proj_of_point_D m p1 p2 in
let ortho = vect_diff_2D proj m in
vect_sum_2D (vect_sum_2D ortho ortho) m ;;
(* ------------------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------------------- *)
(* XXXXXX Physics functions *)
let step_one_ball (b : ball) (dt : float) =
{
x = b.xy.x +. b.v.x *. dt ;
y = b.xy.y +. b.v.y *. dt ;
} ;;
let is_in_bounding_box (b : ball) (poly : polygon) =
(b.xy.x +. b.radius >= poly.xmin) && (b.xy.x -. b.radius <= poly.xmax) &&
(b.xy.y +. b.radius >= poly.ymin) && (b.xy.y -. b.radius <= poly.ymax) ;;
let distance_line_segment (m : pt_2d) (spt : pt_2d) (ept : pt_2d) =
match (-. ((ept.x -. spt.x) *. (spt.x -. m.x) +. (ept.y -. spt.y) *. (spt.y -. m.y)) /. ((ept.x -. spt.x) *. (ept.x -. spt.x) +. (ept.y -. spt.y) *. (ept.y -. spt.y))) with
| k when k >= 0. && k <= 1. -> vect_dist_2D (vect_convexf spt ept k) m
| k when k < 0. -> vect_dist_2D spt m
| k -> vect_dist_2D ept m ;;
let is_collision (b : ball) (poly : polygon) (dt : float) =
(* returns the 1st point of the line that the ball collides with *)
if not (is_in_bounding_box b poly) then
(-1)
else begin
try
for i = 0 to Array.length poly.vertexes - 1 do
if (distance_line_segment (step_one_ball b dt) poly.vertexes.(i) poly.vertexes.((i+1) mod Array.length poly.vertexes)) <= b.radius then
raise (ReturnInt i)
done;
(-1)
with
| ReturnInt b -> b
end ;;
let update_ball_data (b : ball) (polys : polygon array) (dt : float) =
let add = ref true in
b.fres.x <- 0. ;
b.fres.y <- 0. ;
for p = 0 to (Array.length polys -1) do
let hit = (is_collision b polys.(p) dt) in
if !add && hit <> -1 then begin
add := false;
score := !score + polys.(p).score ;
(* apply normal reaction force *)
let hit2 = (hit +1) mod (Array.length polys.(p).vertexes) in
let proj = return_proj_of_point b.xy polys.(p).vertexes.(hit) polys.(p).vertexes.(hit2) in
let proj_n = vect_normalize_2D (vect_diff_2D b.xy proj) in
let reaction_force_2 = vect_mult_2D proj_n (univ_g *. b.mass *. (vect_dot_product_2D (vect_normalize_2D gforce) proj_n)) in
b.fres.x <- b.fres.x +. reaction_force_2.x *. polys.(p).restitution ;
b.fres.y <- b.fres.y +. reaction_force_2.y *. polys.(p).restitution ;
(* change velocity according to angle *)
let director = vect_diff_2D polys.(p).vertexes.(hit2) polys.(p).vertexes.(hit) in
let symmetric = vect_symmetry b.v {x = 0. ; y = 0.} director in
b.v.x <- symmetric.x ;
b.v.y <- symmetric.y ;
end
done ;
(* P = mg *)
b.fres.y <- b.fres.y -. univ_g *. b.mass ;
(* PFD : ma = sum(F) *)
b.a.x <- b.fres.x /. b.mass ;
b.a.y <- b.fres.y /. b.mass ;
b.v.x <- b.v.x +. b.a.x *. dt ;
b.v.y <- b.v.y +. b.a.y *. dt ;
b.xy.x <- b.xy.x +. b.v.x *. dt ;
b.xy.y <- b.xy.y +. b.v.y *. dt ;;
(* ------------------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------------------- *)
(* XXXXXX Graphics fcts *)
let draw_integer x0 y n0 r =
(* 7-seg display *)
let n = ref n0 in
let size = ln10 n0 in
let len = r/3 in
let offset = size*(len*11/7)/2 in
for i = 0 to size do
let x = x0 + offset - i*(len*11/7) in
if Array.mem (!n mod 10) [|0; 4; 5; 6; 7; 8; 9|] then
draw_poly_line [|(x-len/2, y+len); (x-len/2, y)|];
if Array.mem (!n mod 10) [|0; 2; 3; 5; 6; 7; 8; 9|] then
draw_poly_line [|(x-len/2, y+len); (x+len/2, y+len)|];
if Array.mem (!n mod 10) [|0; 1; 2; 3; 4; 7; 8; 9|] then
draw_poly_line [|(x+len/2, y+len); (x+len/2, y)|];
if Array.mem (!n mod 10) [|2; 3; 4; 5; 6; 8; 9|] then
draw_poly_line [|(x-len/2, y); (x+len/2, y)|];
if Array.mem (!n mod 10) [|0; 1; 3; 4; 5; 6; 7; 8; 9|] then
draw_poly_line [|(x+len/2, y-len); (x+len/2, y)|];
if Array.mem (!n mod 10) [|0; 2; 3; 5; 6; 8; 9|] then
draw_poly_line [|(x-len/2, y-len); (x+len/2, y-len)|];
if Array.mem (!n mod 10) [|0; 2; 6; 8|] then
draw_poly_line [|(x-len/2, y-len); (x-len/2, y)|];
n := !n/10;
done ;;
let draw_polygon (poly : polygon) =
set_color (rgb (poly.rgb mod 256) ((poly.rgb / 256) mod 256) ((poly.rgb / (256*256)) mod 256)) ;
fill_poly (Array.init (Array.length poly.vertexes) (fun i -> (int_of_float poly.vertexes.(i).x, int_of_float poly.vertexes.(i).y))) ;;
let draw_ball (b : ball) =
set_color (rgb (b.rgb mod 256) ((b.rgb / 256) mod 256) ((b.rgb / (256*256)) mod 256)) ;
fill_circle (int_of_float b.xy.x) (int_of_float b.xy.y) (int_of_float b.radius) ;
set_line_width 4 ;
draw_circle (int_of_float b.xy.x) (int_of_float b.xy.y) (int_of_float b.radius) ;;
(* ------------------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------------------- *)
(* XXXXXX Misc fcts *)
let get1char_plus () =
if key_pressed () then
read_key ()
else
'@' ;;
let create_ball (r : float) (x0 : int) (y0 : int) (m : float) (red : int) (green : int) (blue : int) =
{
radius = r ;
rgb = red + 256 * green + 256 * 256 * blue ;
mass = m;
xy = {x = float_of_int x0; y = float_of_int y0} ;
v = {x = 0. ; y = 0.} ;
a = {x = 0. ; y = 0.} ;
fres = {x = 0. ; y = 0.} ;
} ;;
let create_polygon (arr : (int * int) array) (rest : float) (pts : int) (red : int) (green : int) (blue : int) =
{
vertexes = Array.init (Array.length arr) (fun k -> {x = float_of_int (fst arr.(k)); y = float_of_int (snd arr.(k))}) ;
rgb = red + 256 * green + 256 * 256 * blue ;
xmin = float_of_int (Array.fold_left (fun acc k -> min acc (fst k)) 99999 arr) ;
xmax = float_of_int (Array.fold_left (fun acc k -> max acc (fst k)) (-99999) arr) ;
ymin = float_of_int (Array.fold_left (fun acc k -> min acc (snd k)) 99999 arr) ;
ymax = float_of_int (Array.fold_left (fun acc k -> max acc (snd k)) (-99999) arr) ;
restitution = rest ;
score = pts ;
} ;;
(* ------------------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------------------- *)
(* XXXXXX Main *)
let simulate () =
open_graph " 1200x800" ;
set_window_title "WAH" ;
let pinball = create_ball 25.0 150 730 0.15 169 169 169 in
let triangle = create_polygon [|(100, 100); (100, 700); (1100, 300); (1100, 100)|] 0.15 0 128 255 128 in
let triangle2 = create_polygon [|(1100, 100); (1200, 100); (1200, 750); (1100, 750)|] 1.0 0 255 128 128 in
while true do
let __start = Unix.gettimeofday() in
auto_synchronize false ;
clear_graph () ;
set_color black ;
set_line_width 4 ;
draw_integer 600 770 !score 50 ;
set_line_width 1 ;
draw_polygon triangle ;
draw_polygon triangle2 ;
draw_ball pinball ;
auto_synchronize true ;
Unix.sleepf 0.005 ;
let __end = Unix.gettimeofday() in
update_ball_data pinball [|triangle; triangle2|] (__end -. __start) ;
done;
close_graph () ;;
simulate () ;;
(* ocamlfind ocamlopt -linkpkg -package unix -linkpkg -package graphics -thread -package threads -linkpkg main.ml *)