326 lines
10 KiB
OCaml
326 lines
10 KiB
OCaml
open Graphics ;;
|
|
|
|
Random.self_init () ;;
|
|
|
|
(* use Ctrl+F with 'XXXXXX' to look for sections *)
|
|
|
|
(* ------------------------------------------------------------------------------------- *)
|
|
(* ------------------------------------------------------------------------------------- *)
|
|
(* XXXXXX Types + Constants *)
|
|
|
|
exception ReturnBool of bool ;;
|
|
exception ReturnInt of int ;;
|
|
|
|
type pt_2d = {
|
|
mutable x : float ;
|
|
mutable y : float ;
|
|
} ;;
|
|
|
|
type polygon = {
|
|
vertexes : pt_2d array ;
|
|
rgb : int ;
|
|
xmin : float ;
|
|
xmax : float ;
|
|
ymin : float ;
|
|
ymax : float ;
|
|
mutable restitution : float ;
|
|
score : int ;
|
|
} ;;
|
|
|
|
type ball = {
|
|
radius : float ;
|
|
mass : float ;
|
|
rgb : int ;
|
|
xy : pt_2d ;
|
|
v : pt_2d ;
|
|
a : pt_2d ;
|
|
fres : pt_2d ;
|
|
} ;;
|
|
|
|
let univ_dt = 0.05 ;;
|
|
let univ_friction = 0.8 ;;
|
|
let univ_g = 300.0 ;;
|
|
let pi = 3.14159265358979343 ;;
|
|
|
|
let gforce = {x = 0. ; y = -. univ_g} ;;
|
|
|
|
let score = ref 0 ;;
|
|
|
|
(* ------------------------------------------------------------------------------------- *)
|
|
(* ------------------------------------------------------------------------------------- *)
|
|
(* XXXXXX Arithmetical operations *)
|
|
|
|
let rec ln10 n = match n with
|
|
| k when k < 0 -> failwith "Are you sure about that ?"
|
|
| k when k < 10 -> 0
|
|
| k -> 1 + ln10 (k/10) ;;
|
|
|
|
let convexf x y theta =
|
|
(1.0 -. theta) *. x +. theta *. y ;;
|
|
|
|
(* ------------------------------------------------------------------------------------- *)
|
|
(* ------------------------------------------------------------------------------------- *)
|
|
(* XXXXXX Vectorial operations *)
|
|
|
|
let vect_convexf (px : pt_2d) (py : pt_2d) theta =
|
|
{
|
|
x = convexf px.x py.x theta ;
|
|
y = convexf px.y py.y theta ;
|
|
} ;;
|
|
|
|
|
|
let vect_sum_2D (p1 : pt_2d) (p2 : pt_2d) =
|
|
{
|
|
x = p1.x +. p2.x ;
|
|
y = p1.y +. p2.y ;
|
|
} ;;
|
|
|
|
let vect_diff_2D (p1 : pt_2d) (p2 : pt_2d) =
|
|
{
|
|
x = p1.x -. p2.x ;
|
|
y = p1.y -. p2.y ;
|
|
} ;;
|
|
|
|
let vect_mult_2D (p1 : pt_2d) (lambda : float) =
|
|
{
|
|
x = p1.x *. lambda ;
|
|
y = p1.y *. lambda ;
|
|
} ;;
|
|
|
|
let vect_midpoint_2D (p1 : pt_2d) (p2 : pt_2d) =
|
|
{
|
|
x = (p1.x +. p2.x) /. 2.0 ;
|
|
y = (p1.y +. p2.y) /. 2.0 ;
|
|
} ;;
|
|
|
|
let vect_normal_2D (p1 : pt_2d) (p2 : pt_2d) =
|
|
{
|
|
x = -. (p2.y -. p1.y) ;
|
|
y = (p2.x -. p1.x) ;
|
|
} ;;
|
|
|
|
let return_proj_of_point (m : pt_2d) (spt : pt_2d) (ept : pt_2d) =
|
|
match (-. ((ept.x -. spt.x) *. (spt.x -. m.x) +. (ept.y -. spt.y) *. (spt.y -. m.y)) /. ((ept.x -. spt.x) *. (ept.x -. spt.x) +. (ept.y -. spt.y) *. (ept.y -. spt.y))) with
|
|
| k when k >= 0. && k <= 1. -> (vect_convexf spt ept k)
|
|
| k when k < 0. -> spt
|
|
| k -> ept ;;
|
|
|
|
let return_proj_of_point_D (m : pt_2d) (spt : pt_2d) (ept : pt_2d) =
|
|
let theta = (-. ((ept.x -. spt.x) *. (spt.x -. m.x) +. (ept.y -. spt.y) *. (spt.y -. m.y)) /. ((ept.x -. spt.x) *. (ept.x -. spt.x) +. (ept.y -. spt.y) *. (ept.y -. spt.y))) in
|
|
(vect_convexf spt ept theta) ;;
|
|
|
|
let vect_dot_product_2D (p1 : pt_2d) (p2 : pt_2d) =
|
|
p1.x *. p2.x +. p1.y *. p2.y ;;
|
|
|
|
let vect_norm_2D (p1 : pt_2d) =
|
|
Float.sqrt (vect_dot_product_2D p1 p1) ;;
|
|
|
|
let vect_dist_2D (p1 : pt_2d) (p2 : pt_2d) =
|
|
vect_norm_2D (vect_diff_2D p1 p2) ;;
|
|
|
|
let vect_scale_2D (v1 : pt_2d) (v2 : pt_2d) =
|
|
vect_mult_2D v1 ((vect_norm_2D v2) /. (vect_norm_2D v1)) ;;
|
|
|
|
let vect_normalize_2D (v1 : pt_2d) =
|
|
vect_mult_2D v1 (1.0 /. (vect_norm_2D v1)) ;;
|
|
|
|
let vect_symmetry (m : pt_2d) (p1 : pt_2d) (p2 : pt_2d) =
|
|
let proj = return_proj_of_point_D m p1 p2 in
|
|
let ortho = vect_diff_2D proj m in
|
|
vect_sum_2D (vect_sum_2D ortho ortho) m ;;
|
|
|
|
(* ------------------------------------------------------------------------------------- *)
|
|
(* ------------------------------------------------------------------------------------- *)
|
|
(* XXXXXX Physics functions *)
|
|
|
|
let step_one_ball (b : ball) (dt : float) =
|
|
{
|
|
x = b.xy.x +. b.v.x *. dt ;
|
|
y = b.xy.y +. b.v.y *. dt ;
|
|
} ;;
|
|
|
|
let is_in_bounding_box (b : ball) (poly : polygon) =
|
|
(b.xy.x +. b.radius >= poly.xmin) && (b.xy.x -. b.radius <= poly.xmax) &&
|
|
(b.xy.y +. b.radius >= poly.ymin) && (b.xy.y -. b.radius <= poly.ymax) ;;
|
|
|
|
let distance_line_segment (m : pt_2d) (spt : pt_2d) (ept : pt_2d) =
|
|
match (-. ((ept.x -. spt.x) *. (spt.x -. m.x) +. (ept.y -. spt.y) *. (spt.y -. m.y)) /. ((ept.x -. spt.x) *. (ept.x -. spt.x) +. (ept.y -. spt.y) *. (ept.y -. spt.y))) with
|
|
| k when k >= 0. && k <= 1. -> vect_dist_2D (vect_convexf spt ept k) m
|
|
| k when k < 0. -> vect_dist_2D spt m
|
|
| k -> vect_dist_2D ept m ;;
|
|
|
|
let is_collision (b : ball) (poly : polygon) (dt : float) =
|
|
(* returns the 1st point of the line that the ball collides with *)
|
|
if not (is_in_bounding_box b poly) then
|
|
(-1)
|
|
else begin
|
|
try
|
|
for i = 0 to Array.length poly.vertexes - 1 do
|
|
if (distance_line_segment (step_one_ball b dt) poly.vertexes.(i) poly.vertexes.((i+1) mod Array.length poly.vertexes)) <= b.radius then
|
|
raise (ReturnInt i)
|
|
done;
|
|
(-1)
|
|
with
|
|
| ReturnInt b -> b
|
|
end ;;
|
|
|
|
let update_ball_data (b : ball) (polys : polygon array) (dt : float) =
|
|
let add = ref true in
|
|
|
|
b.fres.x <- 0. ;
|
|
b.fres.y <- 0. ;
|
|
|
|
for p = 0 to (Array.length polys -1) do
|
|
let hit = (is_collision b polys.(p) dt) in
|
|
if !add && hit <> -1 then begin
|
|
add := false;
|
|
score := !score + polys.(p).score ;
|
|
|
|
(* apply normal reaction force *)
|
|
let hit2 = (hit +1) mod (Array.length polys.(p).vertexes) in
|
|
let proj = return_proj_of_point b.xy polys.(p).vertexes.(hit) polys.(p).vertexes.(hit2) in
|
|
let proj_n = vect_normalize_2D (vect_diff_2D b.xy proj) in
|
|
let reaction_force_2 = vect_mult_2D proj_n (univ_g *. b.mass *. (vect_dot_product_2D (vect_normalize_2D gforce) proj_n)) in
|
|
|
|
b.fres.x <- b.fres.x +. reaction_force_2.x *. polys.(p).restitution ;
|
|
b.fres.y <- b.fres.y +. reaction_force_2.y *. polys.(p).restitution ;
|
|
|
|
(* change velocity according to angle *)
|
|
let director = vect_diff_2D polys.(p).vertexes.(hit2) polys.(p).vertexes.(hit) in
|
|
let symmetric = vect_symmetry b.v {x = 0. ; y = 0.} director in
|
|
|
|
b.v.x <- symmetric.x ;
|
|
b.v.y <- symmetric.y ;
|
|
end
|
|
done ;
|
|
|
|
(* P = mg *)
|
|
b.fres.y <- b.fres.y -. univ_g *. b.mass ;
|
|
|
|
(* PFD : ma = sum(F) *)
|
|
b.a.x <- b.fres.x /. b.mass ;
|
|
b.a.y <- b.fres.y /. b.mass ;
|
|
|
|
b.v.x <- b.v.x +. b.a.x *. dt ;
|
|
b.v.y <- b.v.y +. b.a.y *. dt ;
|
|
|
|
b.xy.x <- b.xy.x +. b.v.x *. dt ;
|
|
b.xy.y <- b.xy.y +. b.v.y *. dt ;;
|
|
|
|
(* ------------------------------------------------------------------------------------- *)
|
|
(* ------------------------------------------------------------------------------------- *)
|
|
(* XXXXXX Graphics fcts *)
|
|
|
|
let draw_integer x0 y n0 r =
|
|
(* 7-seg display *)
|
|
let n = ref n0 in
|
|
let size = ln10 n0 in
|
|
let len = r/3 in
|
|
let offset = size*(len*11/7)/2 in
|
|
for i = 0 to size do
|
|
let x = x0 + offset - i*(len*11/7) in
|
|
if Array.mem (!n mod 10) [|0; 4; 5; 6; 7; 8; 9|] then
|
|
draw_poly_line [|(x-len/2, y+len); (x-len/2, y)|];
|
|
|
|
if Array.mem (!n mod 10) [|0; 2; 3; 5; 6; 7; 8; 9|] then
|
|
draw_poly_line [|(x-len/2, y+len); (x+len/2, y+len)|];
|
|
|
|
if Array.mem (!n mod 10) [|0; 1; 2; 3; 4; 7; 8; 9|] then
|
|
draw_poly_line [|(x+len/2, y+len); (x+len/2, y)|];
|
|
|
|
if Array.mem (!n mod 10) [|2; 3; 4; 5; 6; 8; 9|] then
|
|
draw_poly_line [|(x-len/2, y); (x+len/2, y)|];
|
|
|
|
if Array.mem (!n mod 10) [|0; 1; 3; 4; 5; 6; 7; 8; 9|] then
|
|
draw_poly_line [|(x+len/2, y-len); (x+len/2, y)|];
|
|
|
|
if Array.mem (!n mod 10) [|0; 2; 3; 5; 6; 8; 9|] then
|
|
draw_poly_line [|(x-len/2, y-len); (x+len/2, y-len)|];
|
|
|
|
if Array.mem (!n mod 10) [|0; 2; 6; 8|] then
|
|
draw_poly_line [|(x-len/2, y-len); (x-len/2, y)|];
|
|
|
|
n := !n/10;
|
|
done ;;
|
|
|
|
let draw_polygon (poly : polygon) =
|
|
set_color (rgb (poly.rgb mod 256) ((poly.rgb / 256) mod 256) ((poly.rgb / (256*256)) mod 256)) ;
|
|
fill_poly (Array.init (Array.length poly.vertexes) (fun i -> (int_of_float poly.vertexes.(i).x, int_of_float poly.vertexes.(i).y))) ;;
|
|
|
|
let draw_ball (b : ball) =
|
|
set_color (rgb (b.rgb mod 256) ((b.rgb / 256) mod 256) ((b.rgb / (256*256)) mod 256)) ;
|
|
fill_circle (int_of_float b.xy.x) (int_of_float b.xy.y) (int_of_float b.radius) ;
|
|
set_line_width 4 ;
|
|
draw_circle (int_of_float b.xy.x) (int_of_float b.xy.y) (int_of_float b.radius) ;;
|
|
|
|
(* ------------------------------------------------------------------------------------- *)
|
|
(* ------------------------------------------------------------------------------------- *)
|
|
(* XXXXXX Misc fcts *)
|
|
|
|
let get1char_plus () =
|
|
if key_pressed () then
|
|
read_key ()
|
|
else
|
|
'@' ;;
|
|
|
|
let create_ball (r : float) (x0 : int) (y0 : int) (m : float) (red : int) (green : int) (blue : int) =
|
|
{
|
|
radius = r ;
|
|
rgb = red + 256 * green + 256 * 256 * blue ;
|
|
mass = m;
|
|
xy = {x = float_of_int x0; y = float_of_int y0} ;
|
|
v = {x = 0. ; y = 0.} ;
|
|
a = {x = 0. ; y = 0.} ;
|
|
fres = {x = 0. ; y = 0.} ;
|
|
} ;;
|
|
|
|
let create_polygon (arr : (int * int) array) (rest : float) (pts : int) (red : int) (green : int) (blue : int) =
|
|
{
|
|
vertexes = Array.init (Array.length arr) (fun k -> {x = float_of_int (fst arr.(k)); y = float_of_int (snd arr.(k))}) ;
|
|
rgb = red + 256 * green + 256 * 256 * blue ;
|
|
xmin = float_of_int (Array.fold_left (fun acc k -> min acc (fst k)) 99999 arr) ;
|
|
xmax = float_of_int (Array.fold_left (fun acc k -> max acc (fst k)) (-99999) arr) ;
|
|
ymin = float_of_int (Array.fold_left (fun acc k -> min acc (snd k)) 99999 arr) ;
|
|
ymax = float_of_int (Array.fold_left (fun acc k -> max acc (snd k)) (-99999) arr) ;
|
|
restitution = rest ;
|
|
score = pts ;
|
|
} ;;
|
|
|
|
(* ------------------------------------------------------------------------------------- *)
|
|
(* ------------------------------------------------------------------------------------- *)
|
|
(* XXXXXX Main *)
|
|
|
|
let simulate () =
|
|
open_graph " 1200x800" ;
|
|
set_window_title "WAH" ;
|
|
|
|
let pinball = create_ball 25.0 150 730 0.15 169 169 169 in
|
|
let triangle = create_polygon [|(100, 100); (100, 700); (1100, 300); (1100, 100)|] 0.15 0 128 255 128 in
|
|
let triangle2 = create_polygon [|(1100, 100); (1200, 100); (1200, 750); (1100, 750)|] 1.0 0 255 128 128 in
|
|
|
|
while true do
|
|
let __start = Unix.gettimeofday() in
|
|
auto_synchronize false ;
|
|
clear_graph () ;
|
|
|
|
set_color black ;
|
|
set_line_width 4 ;
|
|
draw_integer 600 770 !score 50 ;
|
|
|
|
set_line_width 1 ;
|
|
draw_polygon triangle ;
|
|
draw_polygon triangle2 ;
|
|
draw_ball pinball ;
|
|
|
|
auto_synchronize true ;
|
|
Unix.sleepf 0.005 ;
|
|
|
|
let __end = Unix.gettimeofday() in
|
|
update_ball_data pinball [|triangle; triangle2|] (__end -. __start) ;
|
|
done;
|
|
|
|
close_graph () ;;
|
|
|
|
simulate () ;;
|
|
|
|
(* ocamlfind ocamlopt -linkpkg -package unix -linkpkg -package graphics -thread -package threads -linkpkg main.ml *) |