open Graphics ;; Random.self_init () ;; (* use Ctrl+F with 'XXXXXX' to look for sections *) (* ------------------------------------------------------------------------------------- *) (* ------------------------------------------------------------------------------------- *) (* XXXXXX Types + Constants *) exception ReturnBool of bool ;; exception ReturnInt of int ;; type pt_2d = { mutable x : float ; mutable y : float ; } ;; type polygon = { vertexes : pt_2d array ; rgb : int ; xmin : float ; xmax : float ; ymin : float ; ymax : float ; mutable restitution : float ; score : int ; } ;; type ball = { radius : float ; mass : float ; rgb : int ; xy : pt_2d ; v : pt_2d ; a : pt_2d ; angv : pt_2d ; } ;; let univ_dt = 0.05 ;; let univ_friction = 0.8 ;; let univ_g = 300.0 ;; let pi = 3.14159265358979343 ;; let score = ref 0 ;; (* ------------------------------------------------------------------------------------- *) (* ------------------------------------------------------------------------------------- *) (* XXXXXX Arithmetical operations *) let rec ln10 n = match n with | k when k < 0 -> failwith "Are you sure about that ?" | k when k < 10 -> 0 | k -> 1 + ln10 (k/10) ;; let convexf x y theta = (1.0 -. theta) *. x +. theta *. y ;; (* ------------------------------------------------------------------------------------- *) (* ------------------------------------------------------------------------------------- *) (* XXXXXX Vectorial operations *) let vect_convexf (px : pt_2d) (py : pt_2d) theta = { x = convexf px.x py.x theta ; y = convexf px.y py.y theta ; } ;; let vect_sum_2D (p1 : pt_2d) (p2 : pt_2d) = { x = p1.x +. p2.x ; y = p1.y +. p2.y ; } ;; let vect_diff_2D (p1 : pt_2d) (p2 : pt_2d) = { x = p1.x -. p2.x ; y = p1.y -. p2.y ; } ;; let vect_mult_2D (p1 : pt_2d) (lambda : float) = { x = p1.x *. lambda ; y = p1.y *. lambda ; } ;; let vect_midpoint_2D (p1 : pt_2d) (p2 : pt_2d) = { x = (p1.x +. p2.x) /. 2.0 ; y = (p1.y +. p2.y) /. 2.0 ; } ;; let vect_normal_2D (p1 : pt_2d) (p2 : pt_2d) = { x = -. (p2.y -. p1.y) ; y = (p2.x -. p1.x) ; } ;; let vect_dot_product_2D (p1 : pt_2d) (p2 : pt_2d) = p1.x *. p2.x +. p1.y *. p2.y ;; let vect_norm_2D (p1 : pt_2d) = Float.sqrt (vect_dot_product_2D p1 p1) ;; let vect_dist_2D (p1 : pt_2d) (p2 : pt_2d) = vect_norm_2D (vect_diff_2D p1 p2) ;; let vect_scale_2D (v1 : pt_2d) (v2 : pt_2d) = vect_mult_2D v1 ((vect_norm_2D v2) /. (vect_norm_2D v1)) ;; let vect_normalize_2D (v1 : pt_2d) = vect_mult_2D v1 (1.0 /. (vect_norm_2D v1)) ;; (* ------------------------------------------------------------------------------------- *) (* ------------------------------------------------------------------------------------- *) (* XXXXXX Physics functions *) let step_one_ball (b : ball) (dt : float) = { x = b.xy.x +. b.v.x *. dt ; y = b.xy.y +. b.v.y *. dt ; } ;; let is_in_bounding_box (b : ball) (poly : polygon) = (b.xy.x +. b.radius >= poly.xmin) && (b.xy.x -. b.radius <= poly.xmax) && (b.xy.y +. b.radius >= poly.ymin) && (b.xy.y -. b.radius <= poly.ymax) ;; let distance_line_segment (m : pt_2d) (spt : pt_2d) (ept : pt_2d) = match (-. ((ept.x -. spt.x) *. (spt.x -. m.x) +. (ept.y -. spt.y) *. (spt.y -. m.y)) /. ((ept.x -. spt.x) *. (ept.x -. spt.x) +. (ept.y -. spt.y) *. (ept.y -. spt.y))) with | k when k >= 0. && k <= 1. -> vect_dist_2D (vect_convexf spt ept k) m | k when k < 0. -> vect_dist_2D spt m | k -> vect_dist_2D ept m ;; let return_proj_of_point (m : pt_2d) (spt : pt_2d) (ept : pt_2d) = match (-. ((ept.x -. spt.x) *. (spt.x -. m.x) +. (ept.y -. spt.y) *. (spt.y -. m.y)) /. ((ept.x -. spt.x) *. (ept.x -. spt.x) +. (ept.y -. spt.y) *. (ept.y -. spt.y))) with | k when k >= 0. && k <= 1. -> (vect_convexf spt ept k) | k when k < 0. -> spt | k -> ept;; let is_collision (b : ball) (poly : polygon) (dt : float) = (* returns the 1st point of the line that the ball collides with *) if not (is_in_bounding_box b poly) then (-1) else begin try for i = 0 to Array.length poly.vertexes - 1 do if (distance_line_segment (step_one_ball b dt) poly.vertexes.(i) poly.vertexes.((i+1) mod Array.length poly.vertexes)) <= b.radius then raise (ReturnInt i) done; (-1) with | ReturnInt b -> b end ;; let update_ball_data (b : ball) (polys : polygon array) (dt : float) = let add = ref true in for p = 0 to (Array.length polys -1) do let hit = (is_collision b polys.(p) dt) in if !add && hit <> -1 then begin add := false; score := !score + polys.(p).score ; (* apply normal reaction force *) b.v.x <- b.v.x -. b.a.x *. dt ; b.v.y <- b.v.y -. b.a.y *. dt ; let hit2 = (hit +1) mod (Array.length polys.(p).vertexes) in let proj = return_proj_of_point b.xy polys.(p).vertexes.(hit) polys.(p).vertexes.(hit2) in let nv = vect_norm_2D b.v in let reaction_force = vect_mult_2D (vect_normalize_2D (vect_diff_2D b.xy proj)) nv in b.v.x <- ((reaction_force.x *. polys.(p).restitution)) ; b.v.y <- ((reaction_force.y *. polys.(p).restitution)) ; (* apply friction/rotational force *) end done ; b.xy.x <- b.xy.x +. b.v.x *. dt ; b.xy.y <- b.xy.y +. b.v.y *. dt ; b.v.x <- b.v.x +. b.a.x *. dt ; b.v.y <- b.v.y +. b.a.y *. dt ; b.a.y <- -. univ_g ;; (* ------------------------------------------------------------------------------------- *) (* ------------------------------------------------------------------------------------- *) (* XXXXXX Graphics fcts *) let draw_integer x0 y n0 r = (* 7-seg display *) let n = ref n0 in let size = ln10 n0 in let len = r/3 in let offset = size*(len*11/7)/2 in for i = 0 to size do let x = x0 + offset - i*(len*11/7) in if Array.mem (!n mod 10) [|0; 4; 5; 6; 7; 8; 9|] then draw_poly_line [|(x-len/2, y+len); (x-len/2, y)|]; if Array.mem (!n mod 10) [|0; 2; 3; 5; 6; 7; 8; 9|] then draw_poly_line [|(x-len/2, y+len); (x+len/2, y+len)|]; if Array.mem (!n mod 10) [|0; 1; 2; 3; 4; 7; 8; 9|] then draw_poly_line [|(x+len/2, y+len); (x+len/2, y)|]; if Array.mem (!n mod 10) [|2; 3; 4; 5; 6; 8; 9|] then draw_poly_line [|(x-len/2, y); (x+len/2, y)|]; if Array.mem (!n mod 10) [|0; 1; 3; 4; 5; 6; 7; 8; 9|] then draw_poly_line [|(x+len/2, y-len); (x+len/2, y)|]; if Array.mem (!n mod 10) [|0; 2; 3; 5; 6; 8; 9|] then draw_poly_line [|(x-len/2, y-len); (x+len/2, y-len)|]; if Array.mem (!n mod 10) [|0; 2; 6; 8|] then draw_poly_line [|(x-len/2, y-len); (x-len/2, y)|]; n := !n/10; done ;; let draw_polygon (poly : polygon) = set_color (rgb (poly.rgb mod 256) ((poly.rgb / 256) mod 256) ((poly.rgb / (256*256)) mod 256)) ; fill_poly (Array.init (Array.length poly.vertexes) (fun i -> (int_of_float poly.vertexes.(i).x, int_of_float poly.vertexes.(i).y))) ;; let draw_ball (b : ball) = set_color (rgb (b.rgb mod 256) ((b.rgb / 256) mod 256) ((b.rgb / (256*256)) mod 256)) ; fill_circle (int_of_float b.xy.x) (int_of_float b.xy.y) (int_of_float b.radius) ; set_line_width 4 ; draw_circle (int_of_float b.xy.x) (int_of_float b.xy.y) (int_of_float b.radius) ;; (* ------------------------------------------------------------------------------------- *) (* ------------------------------------------------------------------------------------- *) (* XXXXXX Misc fcts *) let get1char_plus () = if key_pressed () then read_key () else '@' ;; let create_ball (r : float) (x0 : int) (y0 : int) (m : float) (red : int) (green : int) (blue : int) = { radius = r ; rgb = red + 256 * green + 256 * 256 * blue ; mass = m; xy = {x = float_of_int x0; y = float_of_int y0} ; v = {x = 0. ; y = 0.} ; a = {x = 0. ; y = 0.} ; angv = {x = 0. ; y = 0.} ; } ;; let create_polygon (arr : (int * int) array) (rest : float) (pts : int) (red : int) (green : int) (blue : int) = { vertexes = Array.init (Array.length arr) (fun k -> {x = float_of_int (fst arr.(k)); y = float_of_int (snd arr.(k))}) ; rgb = red + 256 * green + 256 * 256 * blue ; xmin = float_of_int (Array.fold_left (fun acc k -> min acc (fst k)) 99999 arr) ; xmax = float_of_int (Array.fold_left (fun acc k -> max acc (fst k)) (-99999) arr) ; ymin = float_of_int (Array.fold_left (fun acc k -> min acc (snd k)) 99999 arr) ; ymax = float_of_int (Array.fold_left (fun acc k -> max acc (snd k)) (-99999) arr) ; restitution = rest ; score = pts ; } ;; (* ------------------------------------------------------------------------------------- *) (* ------------------------------------------------------------------------------------- *) (* XXXXXX Main *) let simulate () = open_graph " 1200x800" ; set_window_title "WAH" ; let pinball = create_ball 25.0 600 700 0.15 169 169 169 in let triangle = create_polygon [|(100, 100); (1100, 800); (1100, 100)|] 0.75 0 128 255 128 in while true do let __start = Unix.gettimeofday() in auto_synchronize false ; clear_graph () ; set_color black ; set_line_width 4 ; draw_integer 600 770 !score 50 ; set_line_width 1 ; draw_polygon triangle ; draw_ball pinball ; auto_synchronize true ; Unix.sleepf 0.005 ; let __end = Unix.gettimeofday() in update_ball_data pinball [|triangle|] (__end -. __start) ; done; close_graph () ;; simulate () ;; (* ocamlfind ocamlopt -linkpkg -package unix -linkpkg -package graphics -thread -package threads -linkpkg main.ml *)